gordonhubackup commited on
Commit
aa55a1c
·
1 Parent(s): 6508995

upload model weight

Browse files
Files changed (2) hide show
  1. README.md +48 -0
  2. lovim_vicuna7b.pth +3 -0
README.md CHANGED
@@ -1,3 +1,51 @@
1
  ---
2
  license: bsd-3-clause
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: bsd-3-clause
3
  ---
4
+ inference: false
5
+ language:
6
+ - en
7
+ pipeline_tag: visual-question-answering
8
+ library_name: transformers
9
+ ---
10
+
11
+ <br>
12
+ <br>
13
+
14
+ # LoViM Model Card
15
+
16
+ ## Model details
17
+
18
+ **Model type:**
19
+ LoViM is an open-source Vision-Languagde model trained by initializing from InstructBLIP and alignment with Vicuna on multimodal instruction-finetuning data.
20
+ It composes of an EVA-CLIP vision encoder, a Q-Former, a projection layer and an auto-regressive language model, based on the decoder only transformer architecture.
21
+
22
+ **Model date:**
23
+ LoViM was trained in July 2023.
24
+
25
+ **Paper or resources for more information:**
26
+ https://project page
27
+
28
+ **License:**
29
+ BSD 3-Clause License
30
+
31
+ **Where to send questions or comments about the model:**
32
+ https://github.com/
33
+
34
+ ## Intended use
35
+ **Primary intended uses:**
36
+ The primary use of LoViM is research on large multimodal models.
37
+
38
+ **Primary intended users:**
39
+ The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
40
+
41
+ ## Training dataset
42
+ Pre-train data: 558K filtered image-text pairs from LAION,CC-3M, and SBU. Selected by LLaVA.
43
+
44
+ Instruction-finetuning data: COCO-Caption, TextCaps, VQAv2, OKVQA, A-OKVQA, LLaVA-150K, OCR-VQA.
45
+
46
+ ## Evaluation dataset
47
+ For zero-shot evaluation on general image task, we selected Nocaps, Flickr30K, VizWiz, Visual Spaial Reasoning (VSR), IconQA, Visual Dialog, ScienceQA, MSRVTT QA, TextVQA and Hateful Memes.
48
+
49
+ For zero-shot evaluation on text-rich image OCR task, we selected ST-VQA, OCR-VQA, Text-VQA, and Doc-VQA.
50
+
51
+ More detials are in our github, https://github.com/
lovim_vicuna7b.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01915359bc5e2ae516104fba908c1c9e25bc9c7f63bda195fc8b37849d6f7622
3
+ size 17786154252