mlabonne commited on
Commit
364dcb7
·
1 Parent(s): bb280eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -7
README.md CHANGED
@@ -21,18 +21,18 @@ datasets:
21
 
22
  # NeuralHermes 2.5 - Mistral 7B
23
 
24
- NeuralHermes is an [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on several benchmarks (see results).
25
 
26
  It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
27
 
28
  The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
29
 
30
- ### Quantized models
31
 
32
- * GGUF: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF
33
- * AWQ: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-AWQ
34
- * GPTQ: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GPTQ
35
- * EXL2:
36
  * 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2
37
  * 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2
38
  * 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2
@@ -97,7 +97,6 @@ sequences = pipeline(
97
  print(sequences[0]['generated_text'])
98
  ```
99
 
100
-
101
  ## Training hyperparameters
102
 
103
  **LoRA**:
 
21
 
22
  # NeuralHermes 2.5 - Mistral 7B
23
 
24
+ NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on most benchmarks (see results).
25
 
26
  It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
27
 
28
  The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
29
 
30
+ ## Quantized models
31
 
32
+ * **GGUF**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF
33
+ * **AWQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-AWQ
34
+ * **GPTQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GPTQ
35
+ * **EXL2**:
36
  * 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2
37
  * 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2
38
  * 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2
 
97
  print(sequences[0]['generated_text'])
98
  ```
99
 
 
100
  ## Training hyperparameters
101
 
102
  **LoRA**: