--- language: - en license: apache-2.0 library_name: transformers tags: - mergekit - merge - lazymergekit base_model: - Qwen/Qwen2.5-32B-Instruct license_name: tongyi-qianwen license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE pipeline_tag: text-generation model-index: - name: BigQwen2.5-52B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 79.29 name: strict accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 59.81 name: normalized accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 17.82 name: exact match source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.94 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 10.45 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 50.22 name: accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct name: Open LLM Leaderboard --- # BigQwen2.5-52B-Instruct ![image/jpeg](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b8e2ba285851687028d395%2F98GiKtmH1AtHHbIbOUH4Y.jpeg) BigQwen2.5-52B-Instruct is a [Qwen/Qwen2-32B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main). It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) recipe. I made it due to popular demand but I haven't tested it so use it at your own risk. ¯\\\_(ツ)_/¯ ## 🔍 Applications It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory. ## 🏆 Evaluation | Metric |BigQwen2.5-Echo-47B-Instruct|**BigQwen2.5-52B-Instruct**|Qwen2.5-32B-Instruct| |-------------------|----:|----:|----:| |Avg. |30.31|37.42|36.17| |IFEval (0-Shot) |73.57|79.29|83.46| |BBH (3-Shot) |44.52|59.81|56.49| |MATH Lvl 5 (4-Shot)| 3.47|17.82|0| |GPQA (0-shot) | 8.61| 6.94|11.74| |MuSR (0-shot) |10.19|10.45|13.5| |MMLU-PRO (5-shot) |41.49|50.22|51.85| ## 🧩 Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - layer_range: [0, 16] model: Qwen/Qwen2.5-32B-Instruct - sources: - layer_range: [8, 24] model: Qwen/Qwen2.5-32B-Instruct - sources: - layer_range: [16, 32] model: Qwen/Qwen2.5-32B-Instruct - sources: - layer_range: [24, 40] model: Qwen/Qwen2.5-32B-Instruct - sources: - layer_range: [32, 48] model: Qwen/Qwen2.5-32B-Instruct - sources: - layer_range: [40, 56] model: Qwen/Qwen2.5-32B-Instruct - sources: - layer_range: [56, 64] model: Qwen/Qwen2.5-32B-Instruct merge_method: passthrough dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/BigQwen2.5-52B-Instruct" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```