--- library_name: peft language: - it license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - ASR_BB_and_EC metrics: - wer model-index: - name: Whisper Large v3 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ASR_BB_and_EC type: ASR_BB_and_EC config: default split: train args: default metrics: - type: wer value: 145.18950437317784 name: Wer --- # Whisper Large v3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ASR_BB_and_EC dataset. It achieves the following results on the evaluation set: - Loss: 0.2251 - Wer: 145.1895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 3.4667 | 0.1142 | 50 | 2.3898 | 126.5306 | | 1.3136 | 0.2283 | 100 | 0.8863 | 65.3061 | | 0.6296 | 0.3425 | 150 | 0.7403 | 55.9767 | | 0.551 | 0.4566 | 200 | 0.6749 | 61.2245 | | 0.4789 | 0.5708 | 250 | 0.6446 | 67.6385 | | 0.4246 | 0.6849 | 300 | 0.5675 | 77.5510 | | 0.3786 | 0.7991 | 350 | 0.5163 | 45.4810 | | 0.3179 | 0.9132 | 400 | 0.4786 | 84.8397 | | 0.3118 | 1.0274 | 450 | 0.4678 | 105.5394 | | 0.2689 | 1.1416 | 500 | 0.4322 | 125.3644 | | 0.2473 | 1.2557 | 550 | 0.3924 | 48.1050 | | 0.2319 | 1.3699 | 600 | 0.3980 | 208.7464 | | 0.2098 | 1.4840 | 650 | 0.3545 | 52.1866 | | 0.2215 | 1.5982 | 700 | 0.3489 | 48.1050 | | 0.1981 | 1.7123 | 750 | 0.3378 | 76.3848 | | 0.1803 | 1.8265 | 800 | 0.3295 | 43.7318 | | 0.1693 | 1.9406 | 850 | 0.3095 | 76.9679 | | 0.1406 | 2.0548 | 900 | 0.2993 | 43.4402 | | 0.1252 | 2.1689 | 950 | 0.2810 | 37.3178 | | 0.111 | 2.2831 | 1000 | 0.2854 | 164.1399 | | 0.1166 | 2.3973 | 1050 | 0.2752 | 124.4898 | | 0.1183 | 2.5114 | 1100 | 0.2493 | 90.3790 | | 0.1014 | 2.6256 | 1150 | 0.2441 | 210.2041 | | 0.1076 | 2.7397 | 1200 | 0.2340 | 152.1866 | | 0.0891 | 2.8539 | 1250 | 0.2312 | 214.5773 | | 0.0841 | 2.9680 | 1300 | 0.2251 | 145.1895 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.2.0 - Datasets 3.1.0 - Tokenizers 0.20.3