minoosh commited on
Commit
da250ea
1 Parent(s): 7520713

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: finetuned_wav2vec2.0-base-on-IEMOCAP_2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # finetuned_wav2vec2.0-base-on-IEMOCAP_2
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.1569
20
+ - Accuracy: 0.7390
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 15
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 1.1881 | 0.99 | 112 | 1.2005 | 0.4768 |
55
+ | 1.0121 | 2.0 | 225 | 1.0271 | 0.5619 |
56
+ | 0.8569 | 3.0 | 338 | 0.9382 | 0.6018 |
57
+ | 0.8679 | 4.0 | 451 | 0.8015 | 0.6947 |
58
+ | 0.5643 | 4.99 | 563 | 0.7752 | 0.7046 |
59
+ | 0.4579 | 6.0 | 676 | 0.7699 | 0.7400 |
60
+ | 0.3993 | 7.0 | 789 | 0.8323 | 0.7102 |
61
+ | 0.319 | 8.0 | 902 | 0.7763 | 0.7400 |
62
+ | 0.1876 | 8.99 | 1014 | 0.8912 | 0.7334 |
63
+ | 0.1888 | 10.0 | 1127 | 0.8836 | 0.7312 |
64
+ | 0.1526 | 11.0 | 1240 | 1.0474 | 0.7290 |
65
+ | 0.0451 | 12.0 | 1353 | 1.0455 | 0.7434 |
66
+ | 0.1281 | 12.99 | 1465 | 1.1207 | 0.7412 |
67
+ | 0.0363 | 14.0 | 1578 | 1.1232 | 0.7445 |
68
+ | 0.0512 | 14.9 | 1680 | 1.1217 | 0.7412 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.29.2
74
+ - Pytorch 2.0.0
75
+ - Datasets 2.12.0
76
+ - Tokenizers 0.13.3