update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: finetuned_wav2vec2.0-base-on-IEMOCAP_2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# finetuned_wav2vec2.0-base-on-IEMOCAP_2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.1569
|
20 |
+
- Accuracy: 0.7390
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 3e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 15
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 1.1881 | 0.99 | 112 | 1.2005 | 0.4768 |
|
55 |
+
| 1.0121 | 2.0 | 225 | 1.0271 | 0.5619 |
|
56 |
+
| 0.8569 | 3.0 | 338 | 0.9382 | 0.6018 |
|
57 |
+
| 0.8679 | 4.0 | 451 | 0.8015 | 0.6947 |
|
58 |
+
| 0.5643 | 4.99 | 563 | 0.7752 | 0.7046 |
|
59 |
+
| 0.4579 | 6.0 | 676 | 0.7699 | 0.7400 |
|
60 |
+
| 0.3993 | 7.0 | 789 | 0.8323 | 0.7102 |
|
61 |
+
| 0.319 | 8.0 | 902 | 0.7763 | 0.7400 |
|
62 |
+
| 0.1876 | 8.99 | 1014 | 0.8912 | 0.7334 |
|
63 |
+
| 0.1888 | 10.0 | 1127 | 0.8836 | 0.7312 |
|
64 |
+
| 0.1526 | 11.0 | 1240 | 1.0474 | 0.7290 |
|
65 |
+
| 0.0451 | 12.0 | 1353 | 1.0455 | 0.7434 |
|
66 |
+
| 0.1281 | 12.99 | 1465 | 1.1207 | 0.7412 |
|
67 |
+
| 0.0363 | 14.0 | 1578 | 1.1232 | 0.7445 |
|
68 |
+
| 0.0512 | 14.9 | 1680 | 1.1217 | 0.7412 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.29.2
|
74 |
+
- Pytorch 2.0.0
|
75 |
+
- Datasets 2.12.0
|
76 |
+
- Tokenizers 0.13.3
|