--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 가퍼 스포츠 낚시 벨트 어깨 하 해상 스탠드업 물고기 싸움 로드 홀더 스포츠/레저>낚시>낚시의류/잡화>힙커버/힙가드 - text: 낚시 태클박스 36리터 세트8 초경량 멀티 테이블 의자 받침대 루어 민물 바다 케리어 BSS158-3 스포츠/레저>낚시>낚시용품>태클박스 - text: 메이저 크래프트 자이언트 킬링 Major Craft GK5SJ-B663 스포츠/레저>낚시>루어낚시>루어낚시세트 - text: 갸프 낚싯대 용골 핸들 땀 흡수 스트랩 미끄럼 방지 절연 라켓 손잡이 커버 스포츠/레저>낚시>낚시용품>가프 - text: 송어베이스 루어 세트 스푼 미끼 스피너 보빈 인공 스포츠/레저>낚시>루어낚시>루어낚시세트 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7.0 | | | 3.0 | | | 1.0 | | | 5.0 | | | 0.0 | | | 4.0 | | | 2.0 | | | 6.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_sl4") # Run inference preds = model("송어베이스 루어 세트 스푼 미끼 스피너 보빈 인공 스포츠/레저>낚시>루어낚시>루어낚시세트") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 7.8018 | 19 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | | 5.0 | 70 | | 6.0 | 70 | | 7.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0091 | 1 | 0.4946 | - | | 0.4545 | 50 | 0.5017 | - | | 0.9091 | 100 | 0.2322 | - | | 1.3636 | 150 | 0.0559 | - | | 1.8182 | 200 | 0.0182 | - | | 2.2727 | 250 | 0.0165 | - | | 2.7273 | 300 | 0.0018 | - | | 3.1818 | 350 | 0.0001 | - | | 3.6364 | 400 | 0.0001 | - | | 4.0909 | 450 | 0.0001 | - | | 4.5455 | 500 | 0.0 | - | | 5.0 | 550 | 0.0 | - | | 5.4545 | 600 | 0.0 | - | | 5.9091 | 650 | 0.0 | - | | 6.3636 | 700 | 0.0 | - | | 6.8182 | 750 | 0.0 | - | | 7.2727 | 800 | 0.0 | - | | 7.7273 | 850 | 0.0 | - | | 8.1818 | 900 | 0.0 | - | | 8.6364 | 950 | 0.0 | - | | 9.0909 | 1000 | 0.0 | - | | 9.5455 | 1050 | 0.0 | - | | 10.0 | 1100 | 0.0 | - | | 10.4545 | 1150 | 0.0 | - | | 10.9091 | 1200 | 0.0 | - | | 11.3636 | 1250 | 0.0 | - | | 11.8182 | 1300 | 0.0 | - | | 12.2727 | 1350 | 0.0 | - | | 12.7273 | 1400 | 0.0 | - | | 13.1818 | 1450 | 0.0 | - | | 13.6364 | 1500 | 0.0 | - | | 14.0909 | 1550 | 0.0 | - | | 14.5455 | 1600 | 0.0 | - | | 15.0 | 1650 | 0.0 | - | | 15.4545 | 1700 | 0.0 | - | | 15.9091 | 1750 | 0.0 | - | | 16.3636 | 1800 | 0.0 | - | | 16.8182 | 1850 | 0.0 | - | | 17.2727 | 1900 | 0.0 | - | | 17.7273 | 1950 | 0.0 | - | | 18.1818 | 2000 | 0.0 | - | | 18.6364 | 2050 | 0.0 | - | | 19.0909 | 2100 | 0.0 | - | | 19.5455 | 2150 | 0.0 | - | | 20.0 | 2200 | 0.0 | - | | 20.4545 | 2250 | 0.0 | - | | 20.9091 | 2300 | 0.0 | - | | 21.3636 | 2350 | 0.0 | - | | 21.8182 | 2400 | 0.0 | - | | 22.2727 | 2450 | 0.0 | - | | 22.7273 | 2500 | 0.0 | - | | 23.1818 | 2550 | 0.0 | - | | 23.6364 | 2600 | 0.0 | - | | 24.0909 | 2650 | 0.0 | - | | 24.5455 | 2700 | 0.0 | - | | 25.0 | 2750 | 0.0 | - | | 25.4545 | 2800 | 0.0 | - | | 25.9091 | 2850 | 0.0 | - | | 26.3636 | 2900 | 0.0 | - | | 26.8182 | 2950 | 0.0 | - | | 27.2727 | 3000 | 0.0 | - | | 27.7273 | 3050 | 0.0 | - | | 28.1818 | 3100 | 0.0 | - | | 28.6364 | 3150 | 0.0 | - | | 29.0909 | 3200 | 0.0 | - | | 29.5455 | 3250 | 0.0 | - | | 30.0 | 3300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```