mini1013 commited on
Commit
e12de26
·
verified ·
1 Parent(s): e90fa8b

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 인바디270 체중계 기계 몸무게 측정기 체성분분석기 체지방 헬스장 보건소 병원 헬스가이드
14
+ - text: 오므론 HEM-7156 가정용 자동 전자 혈압측정기 프리윌
15
+ - text: 신장계 체중계 측정기 전자 저울 휴대용 초등학교 표준색상모델(신장및체중)측정70-130cm 될콩샵
16
+ - text: 스마트 바디 스케일 체지방 체중계 인바디 디지털 화이트 멜킨스포츠
17
+ - text: 자동 초음파 신장 체중 재는기계 체지방 측정기 전자 (블루투스 모델) 화이트 동이네마켓
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.970486965076242
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 7 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1.0 | <ul><li>'소형견 디지털 측정기 동물병원 애완동물 신장 측정기 블루 토토네 직구상점'</li><li>'고정밀 GPS 토지측정기 차량탑재형 휴대용 면적재기 8000mAh리튬배터리+데이터공유+3.5인치화 88마켓플레이스'</li><li>'동명 PVC 관절각도계 곤요메타 고니오메타 Goniometer 에스케이솔루션'</li></ul> |
66
+ | 5.0 | <ul><li>'대형 계근대 농장 고중량 공장 축사 체중계 0.6X0.6m(500kg) 한뉘'</li><li>'레트로체중계 저울 아날로그체중계 대형 눈금 욕실 블랙_기계적 에치제이 컴퍼니'</li><li>'10habit 키재기 장식 3D 아동방 스티커 벽시트 인테리어 판다 10해빗'</li></ul> |
67
+ | 0.0 | <ul><li>'고급형 만보 기 시계 손목 실리콘 게 옐로우 랩바이랩'</li><li>'IW 계수기 [3.2cm×4.5cm] 요가 휘트니스 홈트 씨제이상사'</li><li>'오토워킹 흔들기 자동 만보기 만보계 핸드폰 휴대폰 흔들이 블랙]4핸드폰부상 베어링/무음소거 로얄산티아고'</li></ul> |
68
+ | 4.0 | <ul><li>'브라운 귀체온계 IRT-6030 +필터21p포함 1년무상AS gx 신세계몰'</li><li>'[브라운 온라인 공식 판매점] 귀체온계 택1 (IRT-6030/6510/6520/6525) 브라운 귀체온계 IRT-6520 바이메드'</li><li>'브라운 체온계 전용 렌즈필터/필터캡/리필커버 1통 20개입 (주)에이엔케어'</li></ul> |
69
+ | 6.0 | <ul><li>'인바디 BPBIO320N 자동혈압계 의자포함 조앤지컴퍼니'</li><li>'HEM-7156 가정용 자동전자혈압계 혈압측정기 프리윌커뮤니케이션'</li><li>'인바디 자동 혈���계 BPBIO320S 프린터형 혈압기 병원 그린 전문혈압측정기 320S 본품만 그레이 (주)창보누리'</li></ul> |
70
+ | 3.0 | <ul><li>'[3M] 리트만 카디올로지4 (Cardiology Ⅳ) 청진기 (양면) - 6152/6154/6155/6156/6158 퍼플 6156 닥터메디'</li><li>'3M 리트만 클래식2 페디아트릭 청진기 2113 - 소아용 MinSellAmount 닥터메디'</li><li>'MDF 청진기용 이어팁(1조-2개)스롤/라지 선택구매/MDF 청진기 이어 고무팁 large (1조-2개입) 메디스토어'</li></ul> |
71
+ | 2.0 | <ul><li>'Polar OH1 심박수 센서 픽더마인드'</li><li>'Wahoo Fitness 티커 심박수측정기(HRM) 스텔스 그레이 식스퀄리티'</li><li>'Polar H10 심박수 모니터, 블루투스 HRM 가슴 스트랩 - 아이폰 및 안드로이드 호환, 블랙 식스퀄리티'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Metric |
77
+ |:--------|:-------|
78
+ | **all** | 0.9705 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh1")
97
+ # Run inference
98
+ preds = model("오므론 HEM-7156 가정용 자동 전자 혈압측정기 프리윌")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:-------|:----|
130
+ | Word count | 3 | 9.8693 | 19 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0.0 | 50 |
135
+ | 1.0 | 50 |
136
+ | 2.0 | 6 |
137
+ | 3.0 | 50 |
138
+ | 4.0 | 50 |
139
+ | 5.0 | 50 |
140
+ | 6.0 | 50 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (512, 512)
144
+ - num_epochs: (20, 20)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - num_iterations: 40
148
+ - body_learning_rate: (2e-05, 2e-05)
149
+ - head_learning_rate: 2e-05
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - seed: 42
157
+ - eval_max_steps: -1
158
+ - load_best_model_at_end: False
159
+
160
+ ### Training Results
161
+ | Epoch | Step | Training Loss | Validation Loss |
162
+ |:-------:|:----:|:-------------:|:---------------:|
163
+ | 0.0208 | 1 | 0.4101 | - |
164
+ | 1.0417 | 50 | 0.2002 | - |
165
+ | 2.0833 | 100 | 0.0659 | - |
166
+ | 3.125 | 150 | 0.0326 | - |
167
+ | 4.1667 | 200 | 0.0277 | - |
168
+ | 5.2083 | 250 | 0.0304 | - |
169
+ | 6.25 | 300 | 0.0241 | - |
170
+ | 7.2917 | 350 | 0.0219 | - |
171
+ | 8.3333 | 400 | 0.0276 | - |
172
+ | 9.375 | 450 | 0.0326 | - |
173
+ | 10.4167 | 500 | 0.0048 | - |
174
+ | 11.4583 | 550 | 0.0001 | - |
175
+ | 12.5 | 600 | 0.0001 | - |
176
+ | 13.5417 | 650 | 0.0001 | - |
177
+ | 14.5833 | 700 | 0.0001 | - |
178
+ | 15.625 | 750 | 0.0 | - |
179
+ | 16.6667 | 800 | 0.0 | - |
180
+ | 17.7083 | 850 | 0.0 | - |
181
+ | 18.75 | 900 | 0.0 | - |
182
+ | 19.7917 | 950 | 0.0 | - |
183
+
184
+ ### Framework Versions
185
+ - Python: 3.10.12
186
+ - SetFit: 1.1.0.dev0
187
+ - Sentence Transformers: 3.1.1
188
+ - Transformers: 4.46.1
189
+ - PyTorch: 2.4.0+cu121
190
+ - Datasets: 2.20.0
191
+ - Tokenizers: 0.20.0
192
+
193
+ ## Citation
194
+
195
+ ### BibTeX
196
+ ```bibtex
197
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
198
+ doi = {10.48550/ARXIV.2209.11055},
199
+ url = {https://arxiv.org/abs/2209.11055},
200
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
201
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
202
+ title = {Efficient Few-Shot Learning Without Prompts},
203
+ publisher = {arXiv},
204
+ year = {2022},
205
+ copyright = {Creative Commons Attribution 4.0 International}
206
+ }
207
+ ```
208
+
209
+ <!--
210
+ ## Glossary
211
+
212
+ *Clearly define terms in order to be accessible across audiences.*
213
+ -->
214
+
215
+ <!--
216
+ ## Model Card Authors
217
+
218
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
219
+ -->
220
+
221
+ <!--
222
+ ## Model Card Contact
223
+
224
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
225
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf0001590ff671f981f9bf901ac1faea63cdb0b4474f696d325885f3eaa3d652
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42b8b03e39f3c36ebf00e12759677cf3a1746ea641507248c65d342fef2b2fd5
3
+ size 43935
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff