--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 2pcs 커튼 간단한 컬러 자카드 반투명 화면 침실 거실 장식 가구/인테리어>커튼/블라인드>실커튼 - text: 거실 커튼고정끈 침실 커텐정리줄 묶는끈 자석정리끈 가구/인테리어>커튼/블라인드>커튼액세서리 - text: 이케아 RACKA 레카 커튼봉 부자재 봉 부품 가구/인테리어>커튼/블라인드>커튼>커튼링/봉 - text: 버티컬 블라인드 커텐 암막 폭 버티컬 블라인드 클립 6개 DIY철물 가구/인테리어>커튼/블라인드>버티컬 - text: 집 음식점 현관 나무 비즈발 문발 입구 장식 가구/인테리어>커튼/블라인드>비즈발 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9.0 | | | 6.0 | | | 5.0 | | | 2.0 | | | 8.0 | | | 3.0 | | | 1.0 | | | 4.0 | | | 0.0 | | | 7.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fi15") # Run inference preds = model("집 음식점 현관 나무 비즈발 문발 입구 장식 가구/인테리어>커튼/블라인드>비즈발") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 9.1343 | 20 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | | 5.0 | 70 | | 6.0 | 70 | | 7.0 | 70 | | 8.0 | 70 | | 9.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0073 | 1 | 0.4829 | - | | 0.3650 | 50 | 0.4991 | - | | 0.7299 | 100 | 0.4963 | - | | 1.0949 | 150 | 0.3354 | - | | 1.4599 | 200 | 0.0958 | - | | 1.8248 | 250 | 0.0204 | - | | 2.1898 | 300 | 0.0065 | - | | 2.5547 | 350 | 0.0004 | - | | 2.9197 | 400 | 0.0002 | - | | 3.2847 | 450 | 0.0002 | - | | 3.6496 | 500 | 0.0001 | - | | 4.0146 | 550 | 0.0001 | - | | 4.3796 | 600 | 0.0001 | - | | 4.7445 | 650 | 0.0001 | - | | 5.1095 | 700 | 0.0001 | - | | 5.4745 | 750 | 0.0001 | - | | 5.8394 | 800 | 0.0001 | - | | 6.2044 | 850 | 0.0001 | - | | 6.5693 | 900 | 0.0001 | - | | 6.9343 | 950 | 0.0001 | - | | 7.2993 | 1000 | 0.0 | - | | 7.6642 | 1050 | 0.0 | - | | 8.0292 | 1100 | 0.0 | - | | 8.3942 | 1150 | 0.0 | - | | 8.7591 | 1200 | 0.0 | - | | 9.1241 | 1250 | 0.0 | - | | 9.4891 | 1300 | 0.0 | - | | 9.8540 | 1350 | 0.0 | - | | 10.2190 | 1400 | 0.0 | - | | 10.5839 | 1450 | 0.0 | - | | 10.9489 | 1500 | 0.0 | - | | 11.3139 | 1550 | 0.0 | - | | 11.6788 | 1600 | 0.0 | - | | 12.0438 | 1650 | 0.0 | - | | 12.4088 | 1700 | 0.0 | - | | 12.7737 | 1750 | 0.0 | - | | 13.1387 | 1800 | 0.0 | - | | 13.5036 | 1850 | 0.0 | - | | 13.8686 | 1900 | 0.0 | - | | 14.2336 | 1950 | 0.0 | - | | 14.5985 | 2000 | 0.0 | - | | 14.9635 | 2050 | 0.0 | - | | 15.3285 | 2100 | 0.0 | - | | 15.6934 | 2150 | 0.0 | - | | 16.0584 | 2200 | 0.0 | - | | 16.4234 | 2250 | 0.0 | - | | 16.7883 | 2300 | 0.0 | - | | 17.1533 | 2350 | 0.0 | - | | 17.5182 | 2400 | 0.0 | - | | 17.8832 | 2450 | 0.0 | - | | 18.2482 | 2500 | 0.0 | - | | 18.6131 | 2550 | 0.0 | - | | 18.9781 | 2600 | 0.0 | - | | 19.3431 | 2650 | 0.0 | - | | 19.7080 | 2700 | 0.0 | - | | 20.0730 | 2750 | 0.0 | - | | 20.4380 | 2800 | 0.0 | - | | 20.8029 | 2850 | 0.0 | - | | 21.1679 | 2900 | 0.0 | - | | 21.5328 | 2950 | 0.0 | - | | 21.8978 | 3000 | 0.0 | - | | 22.2628 | 3050 | 0.0 | - | | 22.6277 | 3100 | 0.0 | - | | 22.9927 | 3150 | 0.0 | - | | 23.3577 | 3200 | 0.0 | - | | 23.7226 | 3250 | 0.0 | - | | 24.0876 | 3300 | 0.0 | - | | 24.4526 | 3350 | 0.0 | - | | 24.8175 | 3400 | 0.0 | - | | 25.1825 | 3450 | 0.0 | - | | 25.5474 | 3500 | 0.0 | - | | 25.9124 | 3550 | 0.0 | - | | 26.2774 | 3600 | 0.0 | - | | 26.6423 | 3650 | 0.0 | - | | 27.0073 | 3700 | 0.0 | - | | 27.3723 | 3750 | 0.0 | - | | 27.7372 | 3800 | 0.0 | - | | 28.1022 | 3850 | 0.0 | - | | 28.4672 | 3900 | 0.0 | - | | 28.8321 | 3950 | 0.0 | - | | 29.1971 | 4000 | 0.0 | - | | 29.5620 | 4050 | 0.0 | - | | 29.9270 | 4100 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```