mini1013 commited on
Commit
bfc4285
·
verified ·
1 Parent(s): f750765

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 2pcs 커튼 간단한 컬러 자카드 반투명 화면 침실 거실 장식 가구/인테리어>커튼/블라인드>실커튼
9
+ - text: 거실 커튼고정끈 침실 커텐정리줄 묶는끈 자석정리끈 가구/인테리어>커튼/블라인드>커튼액세서리
10
+ - text: 이케아 RACKA 레카 커튼봉 부자재 봉 부품 가구/인테리어>커튼/블라인드>커튼>커튼링/봉
11
+ - text: 버티컬 블라인드 커텐 암막 폭 버티컬 블라인드 클립 6개 DIY철물 가구/인테리어>커튼/블라인드>버티컬
12
+ - text: 집 음식점 현관 나무 비즈발 문발 입구 장식 가구/인테리어>커튼/블라인드>비즈발
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 10 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 9.0 | <ul><li>'누베스 베이직 콤비블라인드 에블린쉐이드 50x50 가구/인테리어>커튼/블라인드>콤비블라인드'</li><li>'창안애 내츄럴 콤비블라인드 커튼 거실 안방 30 x 30 가구/인테리어>커튼/블라인드>콤비블라인드'</li><li>'누베스 베이직 콤비 블라인드 에블린쉐이드 145 X 240 가구/인테리어>커튼/블라인드>콤비블라인드'</li></ul> |
66
+ | 6.0 | <ul><li>'탈의실 간이피팅룸 이동 접이식 야외 도어 커튼 휴대용 I자커튼 사무실 학교 13컬러 가구/인테리어>커튼/블라인드>자바라'</li><li>'자바라 도어 베란다 슬라이딩 칸막이 문 가구/인테리어>커튼/블라인드>자바라'</li><li>'접이식 도어 주방 화장실 방수 미닫이 문 자바라 커튼 가구/인테리어>커튼/블라인드>자바라'</li></ul> |
67
+ | 5.0 | <ul><li>'창안애 허니콤블라인드 벌집쉐이드 90 x 150 2개 가구/인테리어>커튼/블라인드>블라인드'</li><li>'홈안애 오동나무 베란다 원목 우드블라인드 40 x 40 가구/인테리어>커튼/블라인드>블라인드'</li><li>'창안애 50mm 타공 알루미늄 블라인드 방염방수 30 x 30 가구/인테리어>커튼/블라인드>블라인드'</li></ul> |
68
+ | 2.0 | <ul><li>'창안애 시그니처 클로브 암막롤스크린 30x30 가구/인테리어>커튼/블라인드>롤스크린'</li><li>'해비체 썬스크린 롤스크린 거실 베란다 창문 50x50 가구/인테리어>커튼/블라인드>롤스크린'</li><li>'아라크네 1+1 암막 롤스크린 소형 90 x 210 2개 가구/인테리어>커튼/블라인드>롤스크린'</li></ul> |
69
+ | 8.0 | <ul><li>'기숙사 가림막 학생방 이층침대커튼 암막 프라이버시 가구/인테리어>커튼/블라인드>커튼/로만세트'</li><li>'메종드모노 메이체크 먼지없는 가리개커튼 창문형긴창형 창문형 135x150 1장 가구/인테리어>커튼/블라인드>커튼/로만세트'</li><li>'폭커튼 커튼링 가구/인테리어>커튼/블라인드>커튼>커튼링/봉'</li></ul> |
70
+ | 3.0 | <ul><li>'창문가리개 크기 가구/인테리어>커튼/블라인드>바란스'</li><li>'실커튼 발 가림막 인테리어 줄커튼 가리개 가구/인테리어>커튼/블라인드>바란스'</li><li>'쥬앤크홈 멜랑 체크 가리개커튼 7색상 맞춤 가림막커튼 패브릭 창문 베란다 현관 중문 선반 가구/인테리어>커튼/블라인드>바란스'</li></ul> |
71
+ | 1.0 | <ul><li>'부드러운 문짝 커튼 내마모성 파티션 호텔 가구/인테리어>커튼/블라인드>로만셰이드'</li><li>'클래식 시즌 커튼 침실 장식 뜨개질 대만 풍수 가구/인테리어>커튼/블라인드>로만셰이드'</li><li>'로만쉐이드 나비 미국 축구 선수 커튼 욕실 3D 로먼쉐이드 가구/인테리어>커튼/블라인드>로만셰이드'</li></ul> |
72
+ | 4.0 | <ul><li>'롤스크린버티컬 블라인드버티컬 고정클립 카페 커피숍 6개 PW826DA4 가구/인테리어>커튼/블라인드>버티컬'</li><li>'암막 롤 스크린 러 바이저 휴대용 셔터 자동차 앞 유리 흡입 컵 주방 사무용품 7 - 가구/인테리어>커튼/블라인드>버티컬'</li><li>'햇빛가리개 붙이는 롤업 블라인드 58x125 가구/인테리어>커튼/블라인드>버티컬'</li></ul> |
73
+ | 0.0 | <ul><li>'커튼핀 콤비손잡이 세련된 꽃 모양 창 커튼 1 개 백 리본 커튼장식 롤스크린부품 가구/인테리어>커튼/블라인드>커튼액세서리'</li><li>'백장미 플라워 커튼 집게 1P 가구/인테리어>커튼/블라인드>커튼액세서리'</li><li>'타이백 커튼 고정끈 커텐핀 커튼집게 커텐걸이 가구/인테리어>커튼/블라인드>커튼액세서리'</li></ul> |
74
+ | 7.0 | <ul><li>'Jon 가든 출입문 모기장 현관방충망 가구/인테리어>커튼/블라인드>캐노피'</li><li>'이층침대모기장 낮은 천장형 모기장 2층 침대 커튼 슈퍼 싱글 베드 커텐형 천막 가구/인테리어>커튼/블라인드>캐노피'</li><li>'사무실햇빛가리개 책상 모니터 비침 형광등 자유조정 사무실 침대 캐노피 가림막 다용도 커버 가구/인테리어>커튼/블라인드>캐노피'</li></ul> |
75
+
76
+ ## Evaluation
77
+
78
+ ### Metrics
79
+ | Label | Accuracy |
80
+ |:--------|:---------|
81
+ | **all** | 1.0 |
82
+
83
+ ## Uses
84
+
85
+ ### Direct Use for Inference
86
+
87
+ First install the SetFit library:
88
+
89
+ ```bash
90
+ pip install setfit
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+
95
+ ```python
96
+ from setfit import SetFitModel
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fi15")
100
+ # Run inference
101
+ preds = model("집 음식점 현관 나무 비즈발 문발 입구 장식 가구/인테리어>커튼/블라인드>비즈발")
102
+ ```
103
+
104
+ <!--
105
+ ### Downstream Use
106
+
107
+ *List how someone could finetune this model on their own dataset.*
108
+ -->
109
+
110
+ <!--
111
+ ### Out-of-Scope Use
112
+
113
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
114
+ -->
115
+
116
+ <!--
117
+ ## Bias, Risks and Limitations
118
+
119
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
120
+ -->
121
+
122
+ <!--
123
+ ### Recommendations
124
+
125
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
126
+ -->
127
+
128
+ ## Training Details
129
+
130
+ ### Training Set Metrics
131
+ | Training set | Min | Median | Max |
132
+ |:-------------|:----|:-------|:----|
133
+ | Word count | 2 | 9.1343 | 20 |
134
+
135
+ | Label | Training Sample Count |
136
+ |:------|:----------------------|
137
+ | 0.0 | 70 |
138
+ | 1.0 | 70 |
139
+ | 2.0 | 70 |
140
+ | 3.0 | 70 |
141
+ | 4.0 | 70 |
142
+ | 5.0 | 70 |
143
+ | 6.0 | 70 |
144
+ | 7.0 | 70 |
145
+ | 8.0 | 70 |
146
+ | 9.0 | 70 |
147
+
148
+ ### Training Hyperparameters
149
+ - batch_size: (256, 256)
150
+ - num_epochs: (30, 30)
151
+ - max_steps: -1
152
+ - sampling_strategy: oversampling
153
+ - num_iterations: 50
154
+ - body_learning_rate: (2e-05, 1e-05)
155
+ - head_learning_rate: 0.01
156
+ - loss: CosineSimilarityLoss
157
+ - distance_metric: cosine_distance
158
+ - margin: 0.25
159
+ - end_to_end: False
160
+ - use_amp: False
161
+ - warmup_proportion: 0.1
162
+ - l2_weight: 0.01
163
+ - seed: 42
164
+ - eval_max_steps: -1
165
+ - load_best_model_at_end: False
166
+
167
+ ### Training Results
168
+ | Epoch | Step | Training Loss | Validation Loss |
169
+ |:-------:|:----:|:-------------:|:---------------:|
170
+ | 0.0073 | 1 | 0.4829 | - |
171
+ | 0.3650 | 50 | 0.4991 | - |
172
+ | 0.7299 | 100 | 0.4963 | - |
173
+ | 1.0949 | 150 | 0.3354 | - |
174
+ | 1.4599 | 200 | 0.0958 | - |
175
+ | 1.8248 | 250 | 0.0204 | - |
176
+ | 2.1898 | 300 | 0.0065 | - |
177
+ | 2.5547 | 350 | 0.0004 | - |
178
+ | 2.9197 | 400 | 0.0002 | - |
179
+ | 3.2847 | 450 | 0.0002 | - |
180
+ | 3.6496 | 500 | 0.0001 | - |
181
+ | 4.0146 | 550 | 0.0001 | - |
182
+ | 4.3796 | 600 | 0.0001 | - |
183
+ | 4.7445 | 650 | 0.0001 | - |
184
+ | 5.1095 | 700 | 0.0001 | - |
185
+ | 5.4745 | 750 | 0.0001 | - |
186
+ | 5.8394 | 800 | 0.0001 | - |
187
+ | 6.2044 | 850 | 0.0001 | - |
188
+ | 6.5693 | 900 | 0.0001 | - |
189
+ | 6.9343 | 950 | 0.0001 | - |
190
+ | 7.2993 | 1000 | 0.0 | - |
191
+ | 7.6642 | 1050 | 0.0 | - |
192
+ | 8.0292 | 1100 | 0.0 | - |
193
+ | 8.3942 | 1150 | 0.0 | - |
194
+ | 8.7591 | 1200 | 0.0 | - |
195
+ | 9.1241 | 1250 | 0.0 | - |
196
+ | 9.4891 | 1300 | 0.0 | - |
197
+ | 9.8540 | 1350 | 0.0 | - |
198
+ | 10.2190 | 1400 | 0.0 | - |
199
+ | 10.5839 | 1450 | 0.0 | - |
200
+ | 10.9489 | 1500 | 0.0 | - |
201
+ | 11.3139 | 1550 | 0.0 | - |
202
+ | 11.6788 | 1600 | 0.0 | - |
203
+ | 12.0438 | 1650 | 0.0 | - |
204
+ | 12.4088 | 1700 | 0.0 | - |
205
+ | 12.7737 | 1750 | 0.0 | - |
206
+ | 13.1387 | 1800 | 0.0 | - |
207
+ | 13.5036 | 1850 | 0.0 | - |
208
+ | 13.8686 | 1900 | 0.0 | - |
209
+ | 14.2336 | 1950 | 0.0 | - |
210
+ | 14.5985 | 2000 | 0.0 | - |
211
+ | 14.9635 | 2050 | 0.0 | - |
212
+ | 15.3285 | 2100 | 0.0 | - |
213
+ | 15.6934 | 2150 | 0.0 | - |
214
+ | 16.0584 | 2200 | 0.0 | - |
215
+ | 16.4234 | 2250 | 0.0 | - |
216
+ | 16.7883 | 2300 | 0.0 | - |
217
+ | 17.1533 | 2350 | 0.0 | - |
218
+ | 17.5182 | 2400 | 0.0 | - |
219
+ | 17.8832 | 2450 | 0.0 | - |
220
+ | 18.2482 | 2500 | 0.0 | - |
221
+ | 18.6131 | 2550 | 0.0 | - |
222
+ | 18.9781 | 2600 | 0.0 | - |
223
+ | 19.3431 | 2650 | 0.0 | - |
224
+ | 19.7080 | 2700 | 0.0 | - |
225
+ | 20.0730 | 2750 | 0.0 | - |
226
+ | 20.4380 | 2800 | 0.0 | - |
227
+ | 20.8029 | 2850 | 0.0 | - |
228
+ | 21.1679 | 2900 | 0.0 | - |
229
+ | 21.5328 | 2950 | 0.0 | - |
230
+ | 21.8978 | 3000 | 0.0 | - |
231
+ | 22.2628 | 3050 | 0.0 | - |
232
+ | 22.6277 | 3100 | 0.0 | - |
233
+ | 22.9927 | 3150 | 0.0 | - |
234
+ | 23.3577 | 3200 | 0.0 | - |
235
+ | 23.7226 | 3250 | 0.0 | - |
236
+ | 24.0876 | 3300 | 0.0 | - |
237
+ | 24.4526 | 3350 | 0.0 | - |
238
+ | 24.8175 | 3400 | 0.0 | - |
239
+ | 25.1825 | 3450 | 0.0 | - |
240
+ | 25.5474 | 3500 | 0.0 | - |
241
+ | 25.9124 | 3550 | 0.0 | - |
242
+ | 26.2774 | 3600 | 0.0 | - |
243
+ | 26.6423 | 3650 | 0.0 | - |
244
+ | 27.0073 | 3700 | 0.0 | - |
245
+ | 27.3723 | 3750 | 0.0 | - |
246
+ | 27.7372 | 3800 | 0.0 | - |
247
+ | 28.1022 | 3850 | 0.0 | - |
248
+ | 28.4672 | 3900 | 0.0 | - |
249
+ | 28.8321 | 3950 | 0.0 | - |
250
+ | 29.1971 | 4000 | 0.0 | - |
251
+ | 29.5620 | 4050 | 0.0 | - |
252
+ | 29.9270 | 4100 | 0.0 | - |
253
+
254
+ ### Framework Versions
255
+ - Python: 3.10.12
256
+ - SetFit: 1.1.0
257
+ - Sentence Transformers: 3.3.1
258
+ - Transformers: 4.44.2
259
+ - PyTorch: 2.2.0a0+81ea7a4
260
+ - Datasets: 3.2.0
261
+ - Tokenizers: 0.19.1
262
+
263
+ ## Citation
264
+
265
+ ### BibTeX
266
+ ```bibtex
267
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
268
+ doi = {10.48550/ARXIV.2209.11055},
269
+ url = {https://arxiv.org/abs/2209.11055},
270
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
271
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
272
+ title = {Efficient Few-Shot Learning Without Prompts},
273
+ publisher = {arXiv},
274
+ year = {2022},
275
+ copyright = {Creative Commons Attribution 4.0 International}
276
+ }
277
+ ```
278
+
279
+ <!--
280
+ ## Glossary
281
+
282
+ *Clearly define terms in order to be accessible across audiences.*
283
+ -->
284
+
285
+ <!--
286
+ ## Model Card Authors
287
+
288
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
289
+ -->
290
+
291
+ <!--
292
+ ## Model Card Contact
293
+
294
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
295
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fi",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5770422425df30ea82320307c74ec1561c12972bb5f6f2b0b0b667e3053ddd70
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33317ae9a438f26e7f113ab02705ef03fa44824467d10f3ea93f7d42ee74efc4
3
+ size 62407
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff