mini1013 commited on
Commit
9fc588a
·
verified ·
1 Parent(s): 37496a7

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 국산 전라도 겉절이 1kg+1kg 열무김치 1kg+1kg 주식회사 하루식품
14
+ - text: 해남 황금절임배추 20kg / 노란 항암배추 국내산 김장 김치 해남 황금절임배추 20kg(7~10포기)_11/18(토) 바이곰
15
+ - text: '[김권태농부] 옥과 맛있는 김치 배추 포기김치 2kg 김권태 배추포기김치 2kg 목화골 우리농산'
16
+ - text: 황금배추로 만든 절임키트 19KG 황금절임키트 19kg_11월 16일 골드바이오스토어
17
+ - text: '[마음심은] 겉절이 3kg / 익을수록 시원한 (주)강가의나무'
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9429298436932024
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 14 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1.0 | <ul><li>'수작업 완전 국내산 양념이 듬뿍 매운 전라도 얼갈이 겉절이 1kg 김장 오텀 골드 (AUTUMN GOLD)'</li><li>'국산 겉절이 2kg+Npay5% 매일생산 당일제조 수 빛 배추 김치 먹보야 수 국산 포기김치3kg+Npay5% (주)먹보야'</li><li>'명광성푸드 술안주로도 간식으로도 맛있는 고구마무스 1kg 고구마무스(1kg) 조이찬스'</li></ul> |
66
+ | 6.0 | <ul><li>'종가집 백김치3kg 프라임 다모여'</li><li>'종가집 백김치 5kg (냉장포장) 주식회사 푸드공공칠'</li><li>'종가집 우리땅 백김치 (5kg) 국내산재료만사용 02.우리땅 백김치(숙성 5kg) 바이라이프'</li></ul> |
67
+ | 11.0 | <ul><li>'이킴 홍진경더김치 총각김치 3kg 동의 쉼포니'</li><li>'[피코크] 조선호텔 총각김치 1.5kg 주식회사 배한네트웍스'</li><li>'CJ제일제당 비비고 총각김치 1.5kg 오루고'</li></ul> |
68
+ | 7.0 | <ul><li>'[CJ](신세계의정부점) 비비고 김치볶음 150g 주식회사 에스에스지닷컴'</li><li>'[CJ](신세계강남점) 비비고김치볶음150g 주식회사 에스에스지닷컴'</li><li>'피코크 조선호텔 무석박지 1kg 주식회사 맨도롱'</li></ul> |
69
+ | 2.0 | <ul><li>'사대부 국산 깍두기 3kg HACCP 인증 (주)우영채널'</li><li>'이킴 홍진경더김치 깍두기 2kg 겨자씨'</li><li>'예소담 특깍두기3kg 농업회사법인(주)예소담'</li></ul> |
70
+ | 5.0 | <ul><li>'예소담 특묵은지3kg 예소담 특묵은지3kg 원츄쟈챠'</li><li>'CJ제일제�� 비비고 묵은지 1.5kg 퓨어리실바'</li><li>'해남 화원농협 이맑은김치 묵은지 10kg 이세몰'</li></ul> |
71
+ | 4.0 | <ul><li>'예소담 특동치미 3kg 농업회사법인(주)예소담'</li><li>'대상 종가집 동치미 2.5kg 1개 하스제이'</li><li>'[열우물]연동치미 450g x 1팩 연근가루로 맛을 낸 동치미 소백스토어 주식회사'</li></ul> |
72
+ | 9.0 | <ul><li>'이담채 상큼한 국내산 오이소박이 2kg 오이소박이 1kg 서부농산영농조합법인'</li><li>'100% 국산 전라도 오이소박이 1kg 제주나는 농산물'</li><li>'이담채 상큼한 국내산 오이소박이 2kg 오이소박이 3kg 서부농산영농조합법인'</li></ul> |
73
+ | 12.0 | <ul><li>'종가집 파김치2.5kg 프라임 다모여'</li><li>'종가집 파김치 2.5kg 다올'</li><li>'아이스박스 발송 종가 파김치 1KG 코스트코 아이스팩 기본1개 도우닷컴'</li></ul> |
74
+ | 10.0 | <ul><li>'황금 김장 절인배추 강원도 고랭지절임배추 10kg 김장양념 고춧가루 12월 29일 (금)도착 큰장터'</li><li>'더맛있는 김장세트 3.5kg(절임배추+배추김치양념) 만들기 밀키트 집콕놀이 김장세트3.5kg 주식회사 삼창'</li><li>'GAP, 저탄소인증 농부삼촌 해남 절임배추 20kg 12월 13일(수) 농부삼촌영농조합법인'</li></ul> |
75
+ | 13.0 | <ul><li>'안동학가산김치 가정용 고랭지 포기김치 4kg (국내산) 3.포기김치 업소용 10kg고춧가루만 중국산 학가산김치서울직판장'</li><li>'김권태 전라도 곡성 옥과맛있는김치 포기 배추김치 김장 2kg 9_전라도 열무김치 2kg 5월~9월 제이엘컴퍼니(JL Company)'</li><li>'청풍 포기김치(실속형) 10kg 2kg 영신내추럴'</li></ul> |
76
+ | 8.0 | <ul><li>'씨제이 비비고 열무김치 900G 홈플러스'</li><li>'영동김치 열무 얼갈이 김치 5kg 영동김치'</li><li>'열무김치 열무 얼갈이 자박이 김치 100% 국내산 [먹부림마켓] 먹부림 마켓'</li></ul> |
77
+ | 3.0 | <ul><li>'익을수록 맛있는 남도식 석박지 무김치 1kg 소복김치'</li><li>'종가집 담백한나박김치1.2kg(PET) 대상JJ'</li><li>'[산들바람김치] 나박물김치 3kg 국산100% 나박김치 반찬 속초 산들바람식품'</li></ul> |
78
+ | 0.0 | <ul><li>'여수돌산갓김치 5kg 김치 국내산 100% 당일생산 미스터홍주부'</li><li>'여수 명물 돌산 갓김치 2kg 국내산 전라도 갓 김치 대한민국농수산'</li><li>'종가집 돌산갓김치3kg(온라인) 프라임 다모여'</li></ul> |
79
+
80
+ ## Evaluation
81
+
82
+ ### Metrics
83
+ | Label | Metric |
84
+ |:--------|:-------|
85
+ | **all** | 0.9429 |
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use for Inference
90
+
91
+ First install the SetFit library:
92
+
93
+ ```bash
94
+ pip install setfit
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+
99
+ ```python
100
+ from setfit import SetFitModel
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd3")
104
+ # Run inference
105
+ preds = model("[마음심은] 겉절이 3kg / 익을수록 시원한 (주)강가의나무")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:-------|:----|
137
+ | Word count | 4 | 8.1522 | 18 |
138
+
139
+ | Label | Training Sample Count |
140
+ |:------|:----------------------|
141
+ | 0.0 | 23 |
142
+ | 1.0 | 50 |
143
+ | 2.0 | 50 |
144
+ | 3.0 | 24 |
145
+ | 4.0 | 31 |
146
+ | 5.0 | 50 |
147
+ | 6.0 | 50 |
148
+ | 7.0 | 40 |
149
+ | 8.0 | 23 |
150
+ | 9.0 | 32 |
151
+ | 10.0 | 50 |
152
+ | 11.0 | 50 |
153
+ | 12.0 | 29 |
154
+ | 13.0 | 50 |
155
+
156
+ ### Training Hyperparameters
157
+ - batch_size: (512, 512)
158
+ - num_epochs: (20, 20)
159
+ - max_steps: -1
160
+ - sampling_strategy: oversampling
161
+ - num_iterations: 40
162
+ - body_learning_rate: (2e-05, 2e-05)
163
+ - head_learning_rate: 2e-05
164
+ - loss: CosineSimilarityLoss
165
+ - distance_metric: cosine_distance
166
+ - margin: 0.25
167
+ - end_to_end: False
168
+ - use_amp: False
169
+ - warmup_proportion: 0.1
170
+ - seed: 42
171
+ - eval_max_steps: -1
172
+ - load_best_model_at_end: False
173
+
174
+ ### Training Results
175
+ | Epoch | Step | Training Loss | Validation Loss |
176
+ |:-------:|:----:|:-------------:|:---------------:|
177
+ | 0.0115 | 1 | 0.4872 | - |
178
+ | 0.5747 | 50 | 0.3163 | - |
179
+ | 1.1494 | 100 | 0.2368 | - |
180
+ | 1.7241 | 150 | 0.1362 | - |
181
+ | 2.2989 | 200 | 0.0482 | - |
182
+ | 2.8736 | 250 | 0.0183 | - |
183
+ | 3.4483 | 300 | 0.0142 | - |
184
+ | 4.0230 | 350 | 0.004 | - |
185
+ | 4.5977 | 400 | 0.0022 | - |
186
+ | 5.1724 | 450 | 0.008 | - |
187
+ | 5.7471 | 500 | 0.0003 | - |
188
+ | 6.3218 | 550 | 0.0004 | - |
189
+ | 6.8966 | 600 | 0.002 | - |
190
+ | 7.4713 | 650 | 0.0004 | - |
191
+ | 8.0460 | 700 | 0.0003 | - |
192
+ | 8.6207 | 750 | 0.0002 | - |
193
+ | 9.1954 | 800 | 0.0002 | - |
194
+ | 9.7701 | 850 | 0.0002 | - |
195
+ | 10.3448 | 900 | 0.0001 | - |
196
+ | 10.9195 | 950 | 0.0001 | - |
197
+ | 11.4943 | 1000 | 0.0001 | - |
198
+ | 12.0690 | 1050 | 0.0001 | - |
199
+ | 12.6437 | 1100 | 0.0001 | - |
200
+ | 13.2184 | 1150 | 0.0001 | - |
201
+ | 13.7931 | 1200 | 0.0001 | - |
202
+ | 14.3678 | 1250 | 0.0001 | - |
203
+ | 14.9425 | 1300 | 0.0001 | - |
204
+ | 15.5172 | 1350 | 0.0001 | - |
205
+ | 16.0920 | 1400 | 0.0001 | - |
206
+ | 16.6667 | 1450 | 0.0001 | - |
207
+ | 17.2414 | 1500 | 0.0001 | - |
208
+ | 17.8161 | 1550 | 0.0001 | - |
209
+ | 18.3908 | 1600 | 0.0001 | - |
210
+ | 18.9655 | 1650 | 0.0001 | - |
211
+ | 19.5402 | 1700 | 0.0001 | - |
212
+
213
+ ### Framework Versions
214
+ - Python: 3.10.12
215
+ - SetFit: 1.1.0.dev0
216
+ - Sentence Transformers: 3.1.1
217
+ - Transformers: 4.46.1
218
+ - PyTorch: 2.4.0+cu121
219
+ - Datasets: 2.20.0
220
+ - Tokenizers: 0.20.0
221
+
222
+ ## Citation
223
+
224
+ ### BibTeX
225
+ ```bibtex
226
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
227
+ doi = {10.48550/ARXIV.2209.11055},
228
+ url = {https://arxiv.org/abs/2209.11055},
229
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
230
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
231
+ title = {Efficient Few-Shot Learning Without Prompts},
232
+ publisher = {arXiv},
233
+ year = {2022},
234
+ copyright = {Creative Commons Attribution 4.0 International}
235
+ }
236
+ ```
237
+
238
+ <!--
239
+ ## Glossary
240
+
241
+ *Clearly define terms in order to be accessible across audiences.*
242
+ -->
243
+
244
+ <!--
245
+ ## Model Card Authors
246
+
247
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
248
+ -->
249
+
250
+ <!--
251
+ ## Model Card Contact
252
+
253
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
254
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b71c9ed74e677485253400933a62b7bc1ea8fe54f927dbc637f628ae2b94c52
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d97c69fa53e115d59848c7db3d3f2ffc937178fc561f423a924e77489ac3adf
3
+ size 87047
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff