Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +734 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 백화점정품 샤넬 루쥬 알뤼르 잉크 6ml 140-AMOUREUX_. (#M)쿠팡 홈>뷰티>메이크업>립 메이크업>립스틱 Coupang
|
14 |
+
> 뷰티 > 메이크업 > 립 메이크업 > 립스틱
|
15 |
+
- text: 더페이스샵 모노큐브 아이섀도우 2g 매트_앙 버터 (#M)화장품/향수>색조메이크업>아이섀도 Gmarket > 뷰티 > 화장품/향수 >
|
16 |
+
색조메이크업 > 아이섀도
|
17 |
+
- text: 3CE BLUR WATER TINT 블러 워터 틴트 FRE_SEPIA LOREAL > LotteOn > 입생로랑 > Generic >
|
18 |
+
틴트 LotteOn > 뷰티 > 메이크업 > 립메이크업 > 립틴트
|
19 |
+
- text: 3CE 페이스 블러쉬 ROSE BEIGE 홈>전체상품;(#M)홈>FACE>치크 Naverstore > 화장품/미용 > 색조메이크업 >
|
20 |
+
블러셔
|
21 |
+
- text: 섀도 듀오 4g 6호 라이커블 LotteOn > 뷰티 > 색조메이크업 > 아이메이크업 LotteOn > 뷰티 > 메이크업 > 아이메이크업
|
22 |
+
> 아이섀도우
|
23 |
+
inference: true
|
24 |
+
model-index:
|
25 |
+
- name: SetFit with mini1013/master_domain
|
26 |
+
results:
|
27 |
+
- task:
|
28 |
+
type: text-classification
|
29 |
+
name: Text Classification
|
30 |
+
dataset:
|
31 |
+
name: Unknown
|
32 |
+
type: unknown
|
33 |
+
split: test
|
34 |
+
metrics:
|
35 |
+
- type: accuracy
|
36 |
+
value: 0.48148148148148145
|
37 |
+
name: Accuracy
|
38 |
+
---
|
39 |
+
|
40 |
+
# SetFit with mini1013/master_domain
|
41 |
+
|
42 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
43 |
+
|
44 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
45 |
+
|
46 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
47 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
48 |
+
|
49 |
+
## Model Details
|
50 |
+
|
51 |
+
### Model Description
|
52 |
+
- **Model Type:** SetFit
|
53 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
54 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
55 |
+
- **Maximum Sequence Length:** 512 tokens
|
56 |
+
- **Number of Classes:** 11 classes
|
57 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
58 |
+
<!-- - **Language:** Unknown -->
|
59 |
+
<!-- - **License:** Unknown -->
|
60 |
+
|
61 |
+
### Model Sources
|
62 |
+
|
63 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
64 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
65 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
66 |
+
|
67 |
+
### Model Labels
|
68 |
+
| Label | Examples |
|
69 |
+
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
70 |
+
| 0 | <ul><li>'[쿠폰10%+~25%묶음]에뛰드 타임어택 50% 반값 전품목 특가 (순정/수분가득콜라겐/섀도우팔레트/클렌징폼) 85.디어달링워터젤틴트_4호앵두레드_650011600 쇼킹딜 홈>뷰티>선케어/메이크업>아이메이크업;11st>메이크업>아이메이크업>아이섀도우;11st>뷰티>선케어/메이크업>아이메이크업;11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메���크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li><li>'네이처카인드 강력한 헤어커버 타투틴트 1개 (#M)쿠팡 홈>생활용품>헤어/바디/세안>염색/파마>염색/헤어컬러>일반염색제(새치) Coupang > 뷰티 > 헤어 > 염색/파마 > 염색/헤어컬러 > 일반염색제(새치)'</li><li>'조르지오 아르마니 엑스터 래커 500 빈티지 500 빈티지 (#M)홈>▶▶ 메이크업 Naverstore > 화장품/미용 > 색조메이크업 > 립글로스'</li></ul> |
|
71 |
+
| 4 | <ul><li>'(할인UP)재생소재를 사용한 대표상품+최대38%혜택까지 카.(192-232)가을메이크업은이니스프리_스키니꼼꼼카라ZERO2브라운X2 화장품/향수>스킨/로션>스킨/토너;(#M)화장품/향수>스킨케어>스킨/토너 Gmarket > 뷰티 > 화장품/향수 > 스킨케어'</li><li>'썸츄어스 레벨 렝쓰 + 리프트 마스카라 DepartmentSsg > 명품화장품 > 메이크업 > 아이 메이크업 > 마스카라 DepartmentSsg > 명품화장품 > 메이크업 > 아이 메이크업 > 마스카라'</li><li>'더블니즈 팡팡 마스카라 (EM01012600)02 컬링팡 (#M)화장품/향수>색조메이크업>마스카라 Gmarket > 뷰티 > 화장품/향수 > 색조메이크업 > 마스카라'</li></ul> |
|
72 |
+
| 8 | <ul><li>'맨즈 아이브로우 펜슬 흙갈색 (#M)11st>남성화장품>남성BB크림>남성BB크림 11st > 뷰티 > 남성화장품 > 남성BB크림'</li><li>'NEW 내추럴 브라우 쉐이퍼 에스프레소 LotteOn > 뷰티 > 네일 > 네일케어 > 큐티클케어 LotteOn > 뷰티 > 네일 > 네일케어 > 큐티클케어'</li><li>'[하프클럽/메이블린뉴욕]디파인 블렌드 아이브로우 펜슬 0.16g 라이트브라운/상세설명참조 LotteOn > 뷰티 > 클렌징 > 립아이리무버 LotteOn > 뷰티 > 클렌징 > 립아이리무버'</li></ul> |
|
73 |
+
| 9 | <ul><li>'[~묶음20%] 에어리벨벳 물복딱복 출시기념 신상&베스트 모음 027.프로 아이 팔레트 미니_001모노무드_선택사항없음 11st>메이크업>립메이크업>립틴트;쇼킹딜 홈>뷰티>선케어/메이크업>립/치크메이크업;11st>뷰티>선케어/메이크업>립/치크메이크업;11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 립/치크메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 립/치크메이크업'</li><li>'[30%+T11%] 에이지투웨니스 샤이닝드롭팩트 케이스+리필3개+단독증정 외 NEW & BEST 모음/루나/포인트 앤 (위글위글)루나 데일리 크러쉬 아이섀도우 팔레트_2호 드라이로즈 쇼킹딜 홈>뷰티>선케어/메이크업>페이스메이크업;11st>뷰티>선케어/메이크업>페이스메이크업;11st>메이크업>페이스메이크업>쿠션팩트;11st > 뷰티 > 메이크업 > 페이스메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 페이스메이크업'</li><li>'[홀리카홀리카] 즉시10%+금액별쿠폰+T11% 개강맞이 ALL세일 /단독 /1+1/금액별 / 56.하드커버 컴플리트 컨실팔레트_없음 11st>메이크업>아이메이크업>아이섀도우;쇼킹딜 홈>뷰티>선케어/메이크업>아이메이크업;11st>뷰티>선케어/메이크업>아이메이크업;11st > 뷰티 > 메이크업 > 아이메이크업 > 아이섀도우 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li></ul> |
|
74 |
+
| 6 | <ul><li>'글로우 플레이 블러쉬 쏘 내추럴 SSG.COM>신세계백화점MAC>신규 컬렉션>글로우 플레이 블러쉬;(#M)SSG.COM>신세계백화점MAC>MAKE-UP ssg > 뷰티 > 메이크업 > 아이메이크업'</li><li>'[~48%+10%즉시]피카소 홀리데이 레디백 추첨 ! 단독세트/스파츌라&팔레트/아이미속눈썹/메이크업브러쉬 [피카소] 생기창조 108 블러셔_-_- 쇼킹딜 홈>뷰티>네일아트/미용기기>미용소품/피부관리;11st>뷰티>네일아트/미용기기>미용소품/피부관리;11st>��티소품>메이크업소품>메이크업소품;11st > 뷰티 > 뷰티소품 > 메이크업소품 11st Hour Event > 패션/뷰티 > 뷰티 > 네일아트/미용기기 > 미용소품/피부관리'</li><li>'[클렌징오일50ml] 글로우온 블러셔(리필+케이스) 세트 M335 소프트 핑크 LotteOn > 뷰티 > 명품화장품 > 메이크업 LotteOn > 뷰티 > 색조메이크업 > 블러셔'</li></ul> |
|
75 |
+
| 1 | <ul><li>'소프트 터치 오토 립 라이너 3호 밀키 브라운 ssg > 뷰티 > 메이크업 > 립메이크업 > 립라이너 ssg > 뷰티 > 메이크업 > 립메이크업 > 립라이너'</li><li>'Maybelline New York Color Sensational Shaping Lip Liner Makeup Gone Griege 001 oz 104 GONE GRIEGE_One Size (#M)SSG.COM/메이크업/립메이크업/립스틱 ssg > 뷰티 > 메이크업 > 립메이크업 > 립스틱'</li><li>'로라 메르시에 롱웨어 립 라이너 - 프렌치 푸시아1.49g/0.05oz (#M)홈>스트로베리넷>향수|디퓨저>향수|디퓨저 전체보기 HMALL > 뷰티 > 메이크업 > 립메이크업'</li></ul> |
|
76 |
+
| 3 | <ul><li>'루즈 언리미티드 마뜨 M BR771 ssg > 뷰티 > 스킨케어 > 클렌징;ssg > 뷰티 > 메이크업 > 치크메이크업;LOREAL > Ssg > 메이블린 > Generic > 아이브로우;ssg > 뷰티 > 스킨케어 > 클렌징 > 클렌징오일;ssg > 뷰티 > 명품화장품 > 메이크업 ssg > 뷰티 > 메이크업 > 치크메이크업 > 블러셔'</li><li>'[하프클럽/메이블린뉴욕]슈퍼 스테이 립 잉크 크레용 1.2g 50_오운유어엠파이어/상세설명참조 LotteOn > 뷰티 > 클렌징 > 립아이리무버 LotteOn > 뷰티 > 클렌징 > 립아이리무버'</li><li>'[단독] 퓨어 컬러 리바이탈라이징 크리스탈 밤 세트 (+파우치) 썬 크리스탈 LotteOn > 백화점 TAP > 명품화장품 > 메인 배너 (PC) LotteOn > 뷰티 > 럭셔리 스킨케어 > 에센스/세럼'</li></ul> |
|
77 |
+
| 7 | <ul><li>'클라란스 워터프루프 펜슬 - 04 피그0.29g/0.01oz (#M)홈>스트로베리넷>향수|디퓨저>향수|디퓨저 전체보기 HMALL > 뷰티 > 메이크업 > 아이메이크업'</li><li>'플린 디파인 슬림 아이라이너 02 딥 브라운 × 2개 (#M)쿠팡 홈>뷰티>메이크업>아이 메이크업>아이라이너 Coupang > 뷰티 > 메이크업 > 아이 메이크업 > 아이라이너'</li><li>'[쿠폰30%+스토어10%]에뛰드 ~64% 21년 신제품 앵콜전(플레이컬러아이즈/그림자쉐딩/픽싱틴트/순정) 40.플레이 101 펜슬_8호_650003065 쇼킹딜 홈>뷰티>스킨케어>크림;쇼킹딜 홈>뷰티>스킨케어>스킨/로션;11st>스킨케어>스킨/토너>스킨/토너;11st>메이크업>아이메이크업>아이섀도우;쇼킹딜 홈>뷰티>선케어/메이크업>아이메이크업;11st>뷰티>선케어/메이크업>아이메이크업;11st > timedeal 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li></ul> |
|
78 |
+
| 10 | <ul><li>'시슬리 스띨로 루미에르 - 3 소프트 베이지2.5ml/0.08oz (#M)홈>스트로베리넷>향수|디퓨저>향수|디퓨저 전체보기 HMALL > 뷰티 > 메이크업 > 치크메이크업'</li><li>'포에버 꾸뛰르 루미나이저 06 코랄 글로우 (#M)홈>화장품/미용>베이스메이크업>파우더>팩트파우더 Naverstore > 화장품/미용 > 베이스메이크업 > 파우더 > 팩트파우더'</li><li>'헤라 페이스 디자이닝 브론저 10g 쉐이딩 팩트 LotteOn > 뷰티 > 메이크업 > 쉐딩/컨투어링 LotteOn > 뷰티 > 메이크업 > 쉐딩/컨투어링'</li></ul> |
|
79 |
+
| 2 | <ul><li>'다슈 맨즈 컬러 체인지 모이스처 립밤 3.9g (#M)화장품/미용>남성화장품>메이크업 Naverstore > 화장품/미용 > 남성화장품 > 메이크업'</li><li>'듀왑 립플럼퍼 오리지날 베놈 3.5ml 트와일라잇 베놈 홈>바디케어>립케어>립케어(스틱);(#M)홈>바디케어>립케어>스틱/밤타입 OLIVEYOUNG > 바디케어 > 립케어 > 스틱/밤타입'</li><li>'라네즈 립 트리트먼트 밤 (볼륨&보습) 라네즈 립 트리트먼트 밤 [볼륨&보습] 홈>바디케어>립케어>립케어(밤);(#M)홈>바디케어>립케어>스틱/밤타입 OLIVEYOUNG > 바디케어 > 립케어 > 스틱/밤타입'</li></ul> |
|
80 |
+
| 5 | <ul><li>'록시땅 홈 퍼퓸 디퓨저 키트 4가지 향기 중 택 1 수플레드리베르떼리바이탈라이징디퓨저리필 (#M)뷰티>명품화장품>향수/홈프래그런스>캔들 CJmall > 뷰티 > 명품화장품 > 향수/홈프래그런스 > 캔들'</li><li>'[해외직구/홍콩직배송] 어반디케이 네이키드 체리 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 메이크업베이스 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 메이크업베이스'</li><li>'밀크바오밥 헤어케어 3종세트 3호 1세트 쿠팡 홈>뷰티>헤어>헤어세트;Coupang > 뷰티 > 헤어 > 헤어세트;(#M)쿠팡 홈>뷰티>선물세트/키트>선물세트>헤어케어 Coupang > 뷰티 > 선물세트/키트 > 선물세트 > 헤어케어'</li></ul> |
|
81 |
+
|
82 |
+
## Evaluation
|
83 |
+
|
84 |
+
### Metrics
|
85 |
+
| Label | Accuracy |
|
86 |
+
|:--------|:---------|
|
87 |
+
| **all** | 0.4815 |
|
88 |
+
|
89 |
+
## Uses
|
90 |
+
|
91 |
+
### Direct Use for Inference
|
92 |
+
|
93 |
+
First install the SetFit library:
|
94 |
+
|
95 |
+
```bash
|
96 |
+
pip install setfit
|
97 |
+
```
|
98 |
+
|
99 |
+
Then you can load this model and run inference.
|
100 |
+
|
101 |
+
```python
|
102 |
+
from setfit import SetFitModel
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bt6_test_flat_top_cate")
|
106 |
+
# Run inference
|
107 |
+
preds = model("3CE 페이스 블러쉬 ROSE BEIGE 홈>전체상품;(#M)홈>FACE>치크 Naverstore > 화장품/미용 > 색조메이크업 > 블러셔")
|
108 |
+
```
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Downstream Use
|
112 |
+
|
113 |
+
*List how someone could finetune this model on their own dataset.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
### Out-of-Scope Use
|
118 |
+
|
119 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
## Bias, Risks and Limitations
|
124 |
+
|
125 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Recommendations
|
130 |
+
|
131 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
## Training Details
|
135 |
+
|
136 |
+
### Training Set Metrics
|
137 |
+
| Training set | Min | Median | Max |
|
138 |
+
|:-------------|:----|:--------|:----|
|
139 |
+
| Word count | 10 | 24.2404 | 79 |
|
140 |
+
|
141 |
+
| Label | Training Sample Count |
|
142 |
+
|:------|:----------------------|
|
143 |
+
| 0 | 50 |
|
144 |
+
| 1 | 50 |
|
145 |
+
| 2 | 50 |
|
146 |
+
| 3 | 50 |
|
147 |
+
| 4 | 50 |
|
148 |
+
| 5 | 50 |
|
149 |
+
| 6 | 50 |
|
150 |
+
| 7 | 50 |
|
151 |
+
| 8 | 50 |
|
152 |
+
| 9 | 50 |
|
153 |
+
| 10 | 49 |
|
154 |
+
|
155 |
+
### Training Hyperparameters
|
156 |
+
- batch_size: (64, 64)
|
157 |
+
- num_epochs: (30, 30)
|
158 |
+
- max_steps: -1
|
159 |
+
- sampling_strategy: oversampling
|
160 |
+
- num_iterations: 100
|
161 |
+
- body_learning_rate: (2e-05, 1e-05)
|
162 |
+
- head_learning_rate: 0.01
|
163 |
+
- loss: CosineSimilarityLoss
|
164 |
+
- distance_metric: cosine_distance
|
165 |
+
- margin: 0.25
|
166 |
+
- end_to_end: False
|
167 |
+
- use_amp: False
|
168 |
+
- warmup_proportion: 0.1
|
169 |
+
- l2_weight: 0.01
|
170 |
+
- seed: 42
|
171 |
+
- eval_max_steps: -1
|
172 |
+
- load_best_model_at_end: False
|
173 |
+
|
174 |
+
### Training Results
|
175 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
176 |
+
|:-------:|:-----:|:-------------:|:---------------:|
|
177 |
+
| 0.0012 | 1 | 0.4756 | - |
|
178 |
+
| 0.0583 | 50 | 0.447 | - |
|
179 |
+
| 0.1166 | 100 | 0.4629 | - |
|
180 |
+
| 0.1748 | 150 | 0.4327 | - |
|
181 |
+
| 0.2331 | 200 | 0.4182 | - |
|
182 |
+
| 0.2914 | 250 | 0.3863 | - |
|
183 |
+
| 0.3497 | 300 | 0.3492 | - |
|
184 |
+
| 0.4079 | 350 | 0.3277 | - |
|
185 |
+
| 0.4662 | 400 | 0.2987 | - |
|
186 |
+
| 0.5245 | 450 | 0.2729 | - |
|
187 |
+
| 0.5828 | 500 | 0.2637 | - |
|
188 |
+
| 0.6410 | 550 | 0.2554 | - |
|
189 |
+
| 0.6993 | 600 | 0.252 | - |
|
190 |
+
| 0.7576 | 650 | 0.2419 | - |
|
191 |
+
| 0.8159 | 700 | 0.2382 | - |
|
192 |
+
| 0.8741 | 750 | 0.239 | - |
|
193 |
+
| 0.9324 | 800 | 0.2294 | - |
|
194 |
+
| 0.9907 | 850 | 0.2274 | - |
|
195 |
+
| 1.0490 | 900 | 0.2237 | - |
|
196 |
+
| 1.1072 | 950 | 0.2241 | - |
|
197 |
+
| 1.1655 | 1000 | 0.2196 | - |
|
198 |
+
| 1.2238 | 1050 | 0.2164 | - |
|
199 |
+
| 1.2821 | 1100 | 0.2119 | - |
|
200 |
+
| 1.3403 | 1150 | 0.2048 | - |
|
201 |
+
| 1.3986 | 1200 | 0.2007 | - |
|
202 |
+
| 1.4569 | 1250 | 0.1969 | - |
|
203 |
+
| 1.5152 | 1300 | 0.1898 | - |
|
204 |
+
| 1.5734 | 1350 | 0.1857 | - |
|
205 |
+
| 1.6317 | 1400 | 0.1753 | - |
|
206 |
+
| 1.6900 | 1450 | 0.1703 | - |
|
207 |
+
| 1.7483 | 1500 | 0.1552 | - |
|
208 |
+
| 1.8065 | 1550 | 0.1481 | - |
|
209 |
+
| 1.8648 | 1600 | 0.1341 | - |
|
210 |
+
| 1.9231 | 1650 | 0.1254 | - |
|
211 |
+
| 1.9814 | 1700 | 0.1077 | - |
|
212 |
+
| 2.0396 | 1750 | 0.0895 | - |
|
213 |
+
| 2.0979 | 1800 | 0.0806 | - |
|
214 |
+
| 2.1562 | 1850 | 0.0674 | - |
|
215 |
+
| 2.2145 | 1900 | 0.0618 | - |
|
216 |
+
| 2.2727 | 1950 | 0.056 | - |
|
217 |
+
| 2.3310 | 2000 | 0.0549 | - |
|
218 |
+
| 2.3893 | 2050 | 0.0492 | - |
|
219 |
+
| 2.4476 | 2100 | 0.0438 | - |
|
220 |
+
| 2.5058 | 2150 | 0.0394 | - |
|
221 |
+
| 2.5641 | 2200 | 0.0395 | - |
|
222 |
+
| 2.6224 | 2250 | 0.0358 | - |
|
223 |
+
| 2.6807 | 2300 | 0.0373 | - |
|
224 |
+
| 2.7389 | 2350 | 0.0303 | - |
|
225 |
+
| 2.7972 | 2400 | 0.0321 | - |
|
226 |
+
| 2.8555 | 2450 | 0.0267 | - |
|
227 |
+
| 2.9138 | 2500 | 0.029 | - |
|
228 |
+
| 2.9720 | 2550 | 0.0314 | - |
|
229 |
+
| 3.0303 | 2600 | 0.031 | - |
|
230 |
+
| 3.0886 | 2650 | 0.019 | - |
|
231 |
+
| 3.1469 | 2700 | 0.02 | - |
|
232 |
+
| 3.2051 | 2750 | 0.0223 | - |
|
233 |
+
| 3.2634 | 2800 | 0.0206 | - |
|
234 |
+
| 3.3217 | 2850 | 0.0173 | - |
|
235 |
+
| 3.3800 | 2900 | 0.016 | - |
|
236 |
+
| 3.4382 | 2950 | 0.0181 | - |
|
237 |
+
| 3.4965 | 3000 | 0.0102 | - |
|
238 |
+
| 3.5548 | 3050 | 0.0078 | - |
|
239 |
+
| 3.6131 | 3100 | 0.0107 | - |
|
240 |
+
| 3.6713 | 3150 | 0.0094 | - |
|
241 |
+
| 3.7296 | 3200 | 0.0089 | - |
|
242 |
+
| 3.7879 | 3250 | 0.0097 | - |
|
243 |
+
| 3.8462 | 3300 | 0.0094 | - |
|
244 |
+
| 3.9044 | 3350 | 0.0111 | - |
|
245 |
+
| 3.9627 | 3400 | 0.0102 | - |
|
246 |
+
| 4.0210 | 3450 | 0.0091 | - |
|
247 |
+
| 4.0793 | 3500 | 0.0082 | - |
|
248 |
+
| 4.1375 | 3550 | 0.0048 | - |
|
249 |
+
| 4.1958 | 3600 | 0.0022 | - |
|
250 |
+
| 4.2541 | 3650 | 0.0007 | - |
|
251 |
+
| 4.3124 | 3700 | 0.0007 | - |
|
252 |
+
| 4.3706 | 3750 | 0.0012 | - |
|
253 |
+
| 4.4289 | 3800 | 0.0009 | - |
|
254 |
+
| 4.4872 | 3850 | 0.0006 | - |
|
255 |
+
| 4.5455 | 3900 | 0.0002 | - |
|
256 |
+
| 4.6037 | 3950 | 0.0002 | - |
|
257 |
+
| 4.6620 | 4000 | 0.0002 | - |
|
258 |
+
| 4.7203 | 4050 | 0.0002 | - |
|
259 |
+
| 4.7786 | 4100 | 0.0002 | - |
|
260 |
+
| 4.8368 | 4150 | 0.0001 | - |
|
261 |
+
| 4.8951 | 4200 | 0.0001 | - |
|
262 |
+
| 4.9534 | 4250 | 0.0001 | - |
|
263 |
+
| 5.0117 | 4300 | 0.0001 | - |
|
264 |
+
| 5.0699 | 4350 | 0.0001 | - |
|
265 |
+
| 5.1282 | 4400 | 0.0001 | - |
|
266 |
+
| 5.1865 | 4450 | 0.0001 | - |
|
267 |
+
| 5.2448 | 4500 | 0.0001 | - |
|
268 |
+
| 5.3030 | 4550 | 0.001 | - |
|
269 |
+
| 5.3613 | 4600 | 0.0003 | - |
|
270 |
+
| 5.4196 | 4650 | 0.0005 | - |
|
271 |
+
| 5.4779 | 4700 | 0.0014 | - |
|
272 |
+
| 5.5361 | 4750 | 0.0005 | - |
|
273 |
+
| 5.5944 | 4800 | 0.0016 | - |
|
274 |
+
| 5.6527 | 4850 | 0.0007 | - |
|
275 |
+
| 5.7110 | 4900 | 0.0003 | - |
|
276 |
+
| 5.7692 | 4950 | 0.0001 | - |
|
277 |
+
| 5.8275 | 5000 | 0.0005 | - |
|
278 |
+
| 5.8858 | 5050 | 0.0004 | - |
|
279 |
+
| 5.9441 | 5100 | 0.0003 | - |
|
280 |
+
| 6.0023 | 5150 | 0.0011 | - |
|
281 |
+
| 6.0606 | 5200 | 0.0001 | - |
|
282 |
+
| 6.1189 | 5250 | 0.0001 | - |
|
283 |
+
| 6.1772 | 5300 | 0.0001 | - |
|
284 |
+
| 6.2354 | 5350 | 0.0001 | - |
|
285 |
+
| 6.2937 | 5400 | 0.0002 | - |
|
286 |
+
| 6.3520 | 5450 | 0.0004 | - |
|
287 |
+
| 6.4103 | 5500 | 0.0009 | - |
|
288 |
+
| 6.4685 | 5550 | 0.0002 | - |
|
289 |
+
| 6.5268 | 5600 | 0.0001 | - |
|
290 |
+
| 6.5851 | 5650 | 0.0 | - |
|
291 |
+
| 6.6434 | 5700 | 0.0 | - |
|
292 |
+
| 6.7016 | 5750 | 0.0 | - |
|
293 |
+
| 6.7599 | 5800 | 0.0 | - |
|
294 |
+
| 6.8182 | 5850 | 0.0001 | - |
|
295 |
+
| 6.8765 | 5900 | 0.0006 | - |
|
296 |
+
| 6.9347 | 5950 | 0.0008 | - |
|
297 |
+
| 6.9930 | 6000 | 0.0013 | - |
|
298 |
+
| 7.0513 | 6050 | 0.0015 | - |
|
299 |
+
| 7.1096 | 6100 | 0.0007 | - |
|
300 |
+
| 7.1678 | 6150 | 0.003 | - |
|
301 |
+
| 7.2261 | 6200 | 0.0031 | - |
|
302 |
+
| 7.2844 | 6250 | 0.0013 | - |
|
303 |
+
| 7.3427 | 6300 | 0.0019 | - |
|
304 |
+
| 7.4009 | 6350 | 0.0025 | - |
|
305 |
+
| 7.4592 | 6400 | 0.0009 | - |
|
306 |
+
| 7.5175 | 6450 | 0.0008 | - |
|
307 |
+
| 7.5758 | 6500 | 0.0001 | - |
|
308 |
+
| 7.6340 | 6550 | 0.0001 | - |
|
309 |
+
| 7.6923 | 6600 | 0.0001 | - |
|
310 |
+
| 7.7506 | 6650 | 0.0 | - |
|
311 |
+
| 7.8089 | 6700 | 0.0 | - |
|
312 |
+
| 7.8671 | 6750 | 0.0 | - |
|
313 |
+
| 7.9254 | 6800 | 0.0 | - |
|
314 |
+
| 7.9837 | 6850 | 0.0 | - |
|
315 |
+
| 8.0420 | 6900 | 0.0 | - |
|
316 |
+
| 8.1002 | 6950 | 0.0 | - |
|
317 |
+
| 8.1585 | 7000 | 0.0 | - |
|
318 |
+
| 8.2168 | 7050 | 0.0 | - |
|
319 |
+
| 8.2751 | 7100 | 0.0 | - |
|
320 |
+
| 8.3333 | 7150 | 0.0 | - |
|
321 |
+
| 8.3916 | 7200 | 0.0 | - |
|
322 |
+
| 8.4499 | 7250 | 0.0 | - |
|
323 |
+
| 8.5082 | 7300 | 0.0 | - |
|
324 |
+
| 8.5664 | 7350 | 0.0 | - |
|
325 |
+
| 8.6247 | 7400 | 0.0 | - |
|
326 |
+
| 8.6830 | 7450 | 0.0 | - |
|
327 |
+
| 8.7413 | 7500 | 0.0 | - |
|
328 |
+
| 8.7995 | 7550 | 0.0 | - |
|
329 |
+
| 8.8578 | 7600 | 0.0 | - |
|
330 |
+
| 8.9161 | 7650 | 0.0 | - |
|
331 |
+
| 8.9744 | 7700 | 0.0 | - |
|
332 |
+
| 9.0326 | 7750 | 0.0 | - |
|
333 |
+
| 9.0909 | 7800 | 0.0 | - |
|
334 |
+
| 9.1492 | 7850 | 0.0 | - |
|
335 |
+
| 9.2075 | 7900 | 0.0 | - |
|
336 |
+
| 9.2657 | 7950 | 0.0 | - |
|
337 |
+
| 9.3240 | 8000 | 0.0 | - |
|
338 |
+
| 9.3823 | 8050 | 0.0 | - |
|
339 |
+
| 9.4406 | 8100 | 0.0 | - |
|
340 |
+
| 9.4988 | 8150 | 0.0 | - |
|
341 |
+
| 9.5571 | 8200 | 0.0 | - |
|
342 |
+
| 9.6154 | 8250 | 0.0 | - |
|
343 |
+
| 9.6737 | 8300 | 0.0 | - |
|
344 |
+
| 9.7319 | 8350 | 0.0 | - |
|
345 |
+
| 9.7902 | 8400 | 0.0 | - |
|
346 |
+
| 9.8485 | 8450 | 0.0 | - |
|
347 |
+
| 9.9068 | 8500 | 0.0 | - |
|
348 |
+
| 9.9650 | 8550 | 0.0 | - |
|
349 |
+
| 10.0233 | 8600 | 0.0 | - |
|
350 |
+
| 10.0816 | 8650 | 0.0001 | - |
|
351 |
+
| 10.1399 | 8700 | 0.0036 | - |
|
352 |
+
| 10.1981 | 8750 | 0.0148 | - |
|
353 |
+
| 10.2564 | 8800 | 0.0142 | - |
|
354 |
+
| 10.3147 | 8850 | 0.0132 | - |
|
355 |
+
| 10.3730 | 8900 | 0.0116 | - |
|
356 |
+
| 10.4312 | 8950 | 0.0041 | - |
|
357 |
+
| 10.4895 | 9000 | 0.0005 | - |
|
358 |
+
| 10.5478 | 9050 | 0.0001 | - |
|
359 |
+
| 10.6061 | 9100 | 0.0003 | - |
|
360 |
+
| 10.6643 | 9150 | 0.0003 | - |
|
361 |
+
| 10.7226 | 9200 | 0.0002 | - |
|
362 |
+
| 10.7809 | 9250 | 0.0001 | - |
|
363 |
+
| 10.8392 | 9300 | 0.0003 | - |
|
364 |
+
| 10.8974 | 9350 | 0.0 | - |
|
365 |
+
| 10.9557 | 9400 | 0.0 | - |
|
366 |
+
| 11.0140 | 9450 | 0.0001 | - |
|
367 |
+
| 11.0723 | 9500 | 0.0 | - |
|
368 |
+
| 11.1305 | 9550 | 0.0 | - |
|
369 |
+
| 11.1888 | 9600 | 0.0 | - |
|
370 |
+
| 11.2471 | 9650 | 0.0 | - |
|
371 |
+
| 11.3054 | 9700 | 0.0 | - |
|
372 |
+
| 11.3636 | 9750 | 0.0 | - |
|
373 |
+
| 11.4219 | 9800 | 0.0 | - |
|
374 |
+
| 11.4802 | 9850 | 0.0007 | - |
|
375 |
+
| 11.5385 | 9900 | 0.0001 | - |
|
376 |
+
| 11.5967 | 9950 | 0.0002 | - |
|
377 |
+
| 11.6550 | 10000 | 0.0014 | - |
|
378 |
+
| 11.7133 | 10050 | 0.0006 | - |
|
379 |
+
| 11.7716 | 10100 | 0.0003 | - |
|
380 |
+
| 11.8298 | 10150 | 0.0003 | - |
|
381 |
+
| 11.8881 | 10200 | 0.0 | - |
|
382 |
+
| 11.9464 | 10250 | 0.0 | - |
|
383 |
+
| 12.0047 | 10300 | 0.0 | - |
|
384 |
+
| 12.0629 | 10350 | 0.0 | - |
|
385 |
+
| 12.1212 | 10400 | 0.0 | - |
|
386 |
+
| 12.1795 | 10450 | 0.0 | - |
|
387 |
+
| 12.2378 | 10500 | 0.002 | - |
|
388 |
+
| 12.2960 | 10550 | 0.0005 | - |
|
389 |
+
| 12.3543 | 10600 | 0.0002 | - |
|
390 |
+
| 12.4126 | 10650 | 0.0 | - |
|
391 |
+
| 12.4709 | 10700 | 0.0 | - |
|
392 |
+
| 12.5291 | 10750 | 0.0 | - |
|
393 |
+
| 12.5874 | 10800 | 0.0 | - |
|
394 |
+
| 12.6457 | 10850 | 0.0002 | - |
|
395 |
+
| 12.7040 | 10900 | 0.0 | - |
|
396 |
+
| 12.7622 | 10950 | 0.0 | - |
|
397 |
+
| 12.8205 | 11000 | 0.0 | - |
|
398 |
+
| 12.8788 | 11050 | 0.0 | - |
|
399 |
+
| 12.9371 | 11100 | 0.0 | - |
|
400 |
+
| 12.9953 | 11150 | 0.0 | - |
|
401 |
+
| 13.0536 | 11200 | 0.0001 | - |
|
402 |
+
| 13.1119 | 11250 | 0.0 | - |
|
403 |
+
| 13.1702 | 11300 | 0.0005 | - |
|
404 |
+
| 13.2284 | 11350 | 0.0008 | - |
|
405 |
+
| 13.2867 | 11400 | 0.0002 | - |
|
406 |
+
| 13.3450 | 11450 | 0.0005 | - |
|
407 |
+
| 13.4033 | 11500 | 0.0001 | - |
|
408 |
+
| 13.4615 | 11550 | 0.0 | - |
|
409 |
+
| 13.5198 | 11600 | 0.0 | - |
|
410 |
+
| 13.5781 | 11650 | 0.0 | - |
|
411 |
+
| 13.6364 | 11700 | 0.0 | - |
|
412 |
+
| 13.6946 | 11750 | 0.0 | - |
|
413 |
+
| 13.7529 | 11800 | 0.0 | - |
|
414 |
+
| 13.8112 | 11850 | 0.0 | - |
|
415 |
+
| 13.8695 | 11900 | 0.0 | - |
|
416 |
+
| 13.9277 | 11950 | 0.0 | - |
|
417 |
+
| 13.9860 | 12000 | 0.0002 | - |
|
418 |
+
| 14.0443 | 12050 | 0.0009 | - |
|
419 |
+
| 14.1026 | 12100 | 0.0 | - |
|
420 |
+
| 14.1608 | 12150 | 0.0 | - |
|
421 |
+
| 14.2191 | 12200 | 0.0 | - |
|
422 |
+
| 14.2774 | 12250 | 0.0 | - |
|
423 |
+
| 14.3357 | 12300 | 0.0 | - |
|
424 |
+
| 14.3939 | 12350 | 0.0 | - |
|
425 |
+
| 14.4522 | 12400 | 0.0 | - |
|
426 |
+
| 14.5105 | 12450 | 0.0 | - |
|
427 |
+
| 14.5688 | 12500 | 0.0 | - |
|
428 |
+
| 14.6270 | 12550 | 0.0 | - |
|
429 |
+
| 14.6853 | 12600 | 0.0 | - |
|
430 |
+
| 14.7436 | 12650 | 0.0 | - |
|
431 |
+
| 14.8019 | 12700 | 0.0 | - |
|
432 |
+
| 14.8601 | 12750 | 0.0 | - |
|
433 |
+
| 14.9184 | 12800 | 0.0 | - |
|
434 |
+
| 14.9767 | 12850 | 0.0 | - |
|
435 |
+
| 15.0350 | 12900 | 0.0 | - |
|
436 |
+
| 15.0932 | 12950 | 0.0 | - |
|
437 |
+
| 15.1515 | 13000 | 0.0 | - |
|
438 |
+
| 15.2098 | 13050 | 0.0 | - |
|
439 |
+
| 15.2681 | 13100 | 0.0 | - |
|
440 |
+
| 15.3263 | 13150 | 0.0 | - |
|
441 |
+
| 15.3846 | 13200 | 0.0 | - |
|
442 |
+
| 15.4429 | 13250 | 0.0 | - |
|
443 |
+
| 15.5012 | 13300 | 0.0 | - |
|
444 |
+
| 15.5594 | 13350 | 0.0 | - |
|
445 |
+
| 15.6177 | 13400 | 0.0 | - |
|
446 |
+
| 15.6760 | 13450 | 0.0 | - |
|
447 |
+
| 15.7343 | 13500 | 0.0 | - |
|
448 |
+
| 15.7925 | 13550 | 0.0 | - |
|
449 |
+
| 15.8508 | 13600 | 0.0 | - |
|
450 |
+
| 15.9091 | 13650 | 0.0 | - |
|
451 |
+
| 15.9674 | 13700 | 0.0 | - |
|
452 |
+
| 16.0256 | 13750 | 0.0 | - |
|
453 |
+
| 16.0839 | 13800 | 0.0 | - |
|
454 |
+
| 16.1422 | 13850 | 0.0 | - |
|
455 |
+
| 16.2005 | 13900 | 0.0 | - |
|
456 |
+
| 16.2587 | 13950 | 0.0 | - |
|
457 |
+
| 16.3170 | 14000 | 0.0 | - |
|
458 |
+
| 16.3753 | 14050 | 0.0 | - |
|
459 |
+
| 16.4336 | 14100 | 0.0 | - |
|
460 |
+
| 16.4918 | 14150 | 0.0 | - |
|
461 |
+
| 16.5501 | 14200 | 0.0 | - |
|
462 |
+
| 16.6084 | 14250 | 0.0 | - |
|
463 |
+
| 16.6667 | 14300 | 0.0 | - |
|
464 |
+
| 16.7249 | 14350 | 0.0 | - |
|
465 |
+
| 16.7832 | 14400 | 0.0 | - |
|
466 |
+
| 16.8415 | 14450 | 0.0 | - |
|
467 |
+
| 16.8998 | 14500 | 0.0 | - |
|
468 |
+
| 16.9580 | 14550 | 0.0 | - |
|
469 |
+
| 17.0163 | 14600 | 0.0 | - |
|
470 |
+
| 17.0746 | 14650 | 0.0 | - |
|
471 |
+
| 17.1329 | 14700 | 0.0 | - |
|
472 |
+
| 17.1911 | 14750 | 0.0 | - |
|
473 |
+
| 17.2494 | 14800 | 0.0 | - |
|
474 |
+
| 17.3077 | 14850 | 0.0 | - |
|
475 |
+
| 17.3660 | 14900 | 0.0 | - |
|
476 |
+
| 17.4242 | 14950 | 0.0 | - |
|
477 |
+
| 17.4825 | 15000 | 0.0 | - |
|
478 |
+
| 17.5408 | 15050 | 0.0 | - |
|
479 |
+
| 17.5991 | 15100 | 0.0 | - |
|
480 |
+
| 17.6573 | 15150 | 0.0 | - |
|
481 |
+
| 17.7156 | 15200 | 0.0 | - |
|
482 |
+
| 17.7739 | 15250 | 0.0 | - |
|
483 |
+
| 17.8322 | 15300 | 0.0 | - |
|
484 |
+
| 17.8904 | 15350 | 0.0 | - |
|
485 |
+
| 17.9487 | 15400 | 0.0 | - |
|
486 |
+
| 18.0070 | 15450 | 0.0 | - |
|
487 |
+
| 18.0653 | 15500 | 0.0 | - |
|
488 |
+
| 18.1235 | 15550 | 0.0 | - |
|
489 |
+
| 18.1818 | 15600 | 0.0 | - |
|
490 |
+
| 18.2401 | 15650 | 0.0 | - |
|
491 |
+
| 18.2984 | 15700 | 0.0 | - |
|
492 |
+
| 18.3566 | 15750 | 0.0 | - |
|
493 |
+
| 18.4149 | 15800 | 0.0 | - |
|
494 |
+
| 18.4732 | 15850 | 0.0 | - |
|
495 |
+
| 18.5315 | 15900 | 0.0 | - |
|
496 |
+
| 18.5897 | 15950 | 0.0 | - |
|
497 |
+
| 18.6480 | 16000 | 0.0 | - |
|
498 |
+
| 18.7063 | 16050 | 0.0 | - |
|
499 |
+
| 18.7646 | 16100 | 0.0 | - |
|
500 |
+
| 18.8228 | 16150 | 0.0 | - |
|
501 |
+
| 18.8811 | 16200 | 0.0 | - |
|
502 |
+
| 18.9394 | 16250 | 0.0 | - |
|
503 |
+
| 18.9977 | 16300 | 0.0 | - |
|
504 |
+
| 19.0559 | 16350 | 0.0 | - |
|
505 |
+
| 19.1142 | 16400 | 0.0 | - |
|
506 |
+
| 19.1725 | 16450 | 0.0 | - |
|
507 |
+
| 19.2308 | 16500 | 0.0 | - |
|
508 |
+
| 19.2890 | 16550 | 0.0 | - |
|
509 |
+
| 19.3473 | 16600 | 0.0 | - |
|
510 |
+
| 19.4056 | 16650 | 0.0 | - |
|
511 |
+
| 19.4639 | 16700 | 0.0 | - |
|
512 |
+
| 19.5221 | 16750 | 0.0 | - |
|
513 |
+
| 19.5804 | 16800 | 0.0 | - |
|
514 |
+
| 19.6387 | 16850 | 0.0 | - |
|
515 |
+
| 19.6970 | 16900 | 0.0 | - |
|
516 |
+
| 19.7552 | 16950 | 0.0 | - |
|
517 |
+
| 19.8135 | 17000 | 0.0 | - |
|
518 |
+
| 19.8718 | 17050 | 0.0 | - |
|
519 |
+
| 19.9301 | 17100 | 0.0 | - |
|
520 |
+
| 19.9883 | 17150 | 0.0 | - |
|
521 |
+
| 20.0466 | 17200 | 0.0 | - |
|
522 |
+
| 20.1049 | 17250 | 0.0 | - |
|
523 |
+
| 20.1632 | 17300 | 0.0 | - |
|
524 |
+
| 20.2214 | 17350 | 0.0 | - |
|
525 |
+
| 20.2797 | 17400 | 0.0 | - |
|
526 |
+
| 20.3380 | 17450 | 0.0 | - |
|
527 |
+
| 20.3963 | 17500 | 0.0 | - |
|
528 |
+
| 20.4545 | 17550 | 0.0 | - |
|
529 |
+
| 20.5128 | 17600 | 0.0 | - |
|
530 |
+
| 20.5711 | 17650 | 0.0 | - |
|
531 |
+
| 20.6294 | 17700 | 0.0 | - |
|
532 |
+
| 20.6876 | 17750 | 0.0 | - |
|
533 |
+
| 20.7459 | 17800 | 0.0 | - |
|
534 |
+
| 20.8042 | 17850 | 0.0 | - |
|
535 |
+
| 20.8625 | 17900 | 0.0 | - |
|
536 |
+
| 20.9207 | 17950 | 0.0 | - |
|
537 |
+
| 20.9790 | 18000 | 0.0 | - |
|
538 |
+
| 21.0373 | 18050 | 0.0 | - |
|
539 |
+
| 21.0956 | 18100 | 0.0 | - |
|
540 |
+
| 21.1538 | 18150 | 0.0 | - |
|
541 |
+
| 21.2121 | 18200 | 0.0 | - |
|
542 |
+
| 21.2704 | 18250 | 0.0 | - |
|
543 |
+
| 21.3287 | 18300 | 0.0 | - |
|
544 |
+
| 21.3869 | 18350 | 0.0 | - |
|
545 |
+
| 21.4452 | 18400 | 0.0 | - |
|
546 |
+
| 21.5035 | 18450 | 0.0 | - |
|
547 |
+
| 21.5618 | 18500 | 0.0 | - |
|
548 |
+
| 21.6200 | 18550 | 0.0 | - |
|
549 |
+
| 21.6783 | 18600 | 0.0 | - |
|
550 |
+
| 21.7366 | 18650 | 0.0 | - |
|
551 |
+
| 21.7949 | 18700 | 0.0 | - |
|
552 |
+
| 21.8531 | 18750 | 0.0 | - |
|
553 |
+
| 21.9114 | 18800 | 0.0 | - |
|
554 |
+
| 21.9697 | 18850 | 0.0 | - |
|
555 |
+
| 22.0280 | 18900 | 0.0 | - |
|
556 |
+
| 22.0862 | 18950 | 0.0 | - |
|
557 |
+
| 22.1445 | 19000 | 0.0 | - |
|
558 |
+
| 22.2028 | 19050 | 0.0 | - |
|
559 |
+
| 22.2611 | 19100 | 0.0 | - |
|
560 |
+
| 22.3193 | 19150 | 0.0 | - |
|
561 |
+
| 22.3776 | 19200 | 0.0 | - |
|
562 |
+
| 22.4359 | 19250 | 0.0 | - |
|
563 |
+
| 22.4942 | 19300 | 0.0 | - |
|
564 |
+
| 22.5524 | 19350 | 0.0 | - |
|
565 |
+
| 22.6107 | 19400 | 0.0 | - |
|
566 |
+
| 22.6690 | 19450 | 0.0 | - |
|
567 |
+
| 22.7273 | 19500 | 0.0 | - |
|
568 |
+
| 22.7855 | 19550 | 0.0 | - |
|
569 |
+
| 22.8438 | 19600 | 0.0 | - |
|
570 |
+
| 22.9021 | 19650 | 0.0 | - |
|
571 |
+
| 22.9604 | 19700 | 0.0 | - |
|
572 |
+
| 23.0186 | 19750 | 0.0 | - |
|
573 |
+
| 23.0769 | 19800 | 0.0 | - |
|
574 |
+
| 23.1352 | 19850 | 0.0 | - |
|
575 |
+
| 23.1935 | 19900 | 0.0 | - |
|
576 |
+
| 23.2517 | 19950 | 0.0 | - |
|
577 |
+
| 23.3100 | 20000 | 0.0 | - |
|
578 |
+
| 23.3683 | 20050 | 0.0 | - |
|
579 |
+
| 23.4266 | 20100 | 0.0 | - |
|
580 |
+
| 23.4848 | 20150 | 0.0 | - |
|
581 |
+
| 23.5431 | 20200 | 0.0 | - |
|
582 |
+
| 23.6014 | 20250 | 0.0 | - |
|
583 |
+
| 23.6597 | 20300 | 0.0 | - |
|
584 |
+
| 23.7179 | 20350 | 0.0 | - |
|
585 |
+
| 23.7762 | 20400 | 0.0 | - |
|
586 |
+
| 23.8345 | 20450 | 0.0 | - |
|
587 |
+
| 23.8928 | 20500 | 0.0 | - |
|
588 |
+
| 23.9510 | 20550 | 0.0 | - |
|
589 |
+
| 24.0093 | 20600 | 0.0 | - |
|
590 |
+
| 24.0676 | 20650 | 0.0 | - |
|
591 |
+
| 24.1259 | 20700 | 0.0 | - |
|
592 |
+
| 24.1841 | 20750 | 0.0 | - |
|
593 |
+
| 24.2424 | 20800 | 0.0 | - |
|
594 |
+
| 24.3007 | 20850 | 0.0 | - |
|
595 |
+
| 24.3590 | 20900 | 0.0 | - |
|
596 |
+
| 24.4172 | 20950 | 0.0 | - |
|
597 |
+
| 24.4755 | 21000 | 0.0 | - |
|
598 |
+
| 24.5338 | 21050 | 0.0 | - |
|
599 |
+
| 24.5921 | 21100 | 0.0 | - |
|
600 |
+
| 24.6503 | 21150 | 0.0 | - |
|
601 |
+
| 24.7086 | 21200 | 0.0 | - |
|
602 |
+
| 24.7669 | 21250 | 0.0 | - |
|
603 |
+
| 24.8252 | 21300 | 0.0 | - |
|
604 |
+
| 24.8834 | 21350 | 0.0 | - |
|
605 |
+
| 24.9417 | 21400 | 0.0 | - |
|
606 |
+
| 25.0 | 21450 | 0.0 | - |
|
607 |
+
| 25.0583 | 21500 | 0.0 | - |
|
608 |
+
| 25.1166 | 21550 | 0.0 | - |
|
609 |
+
| 25.1748 | 21600 | 0.0 | - |
|
610 |
+
| 25.2331 | 21650 | 0.0 | - |
|
611 |
+
| 25.2914 | 21700 | 0.0 | - |
|
612 |
+
| 25.3497 | 21750 | 0.0 | - |
|
613 |
+
| 25.4079 | 21800 | 0.0 | - |
|
614 |
+
| 25.4662 | 21850 | 0.0 | - |
|
615 |
+
| 25.5245 | 21900 | 0.0 | - |
|
616 |
+
| 25.5828 | 21950 | 0.0 | - |
|
617 |
+
| 25.6410 | 22000 | 0.0 | - |
|
618 |
+
| 25.6993 | 22050 | 0.0 | - |
|
619 |
+
| 25.7576 | 22100 | 0.0 | - |
|
620 |
+
| 25.8159 | 22150 | 0.0 | - |
|
621 |
+
| 25.8741 | 22200 | 0.0 | - |
|
622 |
+
| 25.9324 | 22250 | 0.0 | - |
|
623 |
+
| 25.9907 | 22300 | 0.0 | - |
|
624 |
+
| 26.0490 | 22350 | 0.0 | - |
|
625 |
+
| 26.1072 | 22400 | 0.0 | - |
|
626 |
+
| 26.1655 | 22450 | 0.0 | - |
|
627 |
+
| 26.2238 | 22500 | 0.0 | - |
|
628 |
+
| 26.2821 | 22550 | 0.0 | - |
|
629 |
+
| 26.3403 | 22600 | 0.0 | - |
|
630 |
+
| 26.3986 | 22650 | 0.0 | - |
|
631 |
+
| 26.4569 | 22700 | 0.0 | - |
|
632 |
+
| 26.5152 | 22750 | 0.0 | - |
|
633 |
+
| 26.5734 | 22800 | 0.0 | - |
|
634 |
+
| 26.6317 | 22850 | 0.0 | - |
|
635 |
+
| 26.6900 | 22900 | 0.0 | - |
|
636 |
+
| 26.7483 | 22950 | 0.0 | - |
|
637 |
+
| 26.8065 | 23000 | 0.0 | - |
|
638 |
+
| 26.8648 | 23050 | 0.0 | - |
|
639 |
+
| 26.9231 | 23100 | 0.0 | - |
|
640 |
+
| 26.9814 | 23150 | 0.0 | - |
|
641 |
+
| 27.0396 | 23200 | 0.0 | - |
|
642 |
+
| 27.0979 | 23250 | 0.0 | - |
|
643 |
+
| 27.1562 | 23300 | 0.0 | - |
|
644 |
+
| 27.2145 | 23350 | 0.0 | - |
|
645 |
+
| 27.2727 | 23400 | 0.0 | - |
|
646 |
+
| 27.3310 | 23450 | 0.0 | - |
|
647 |
+
| 27.3893 | 23500 | 0.0 | - |
|
648 |
+
| 27.4476 | 23550 | 0.0 | - |
|
649 |
+
| 27.5058 | 23600 | 0.0 | - |
|
650 |
+
| 27.5641 | 23650 | 0.0 | - |
|
651 |
+
| 27.6224 | 23700 | 0.0 | - |
|
652 |
+
| 27.6807 | 23750 | 0.0 | - |
|
653 |
+
| 27.7389 | 23800 | 0.0 | - |
|
654 |
+
| 27.7972 | 23850 | 0.0 | - |
|
655 |
+
| 27.8555 | 23900 | 0.0 | - |
|
656 |
+
| 27.9138 | 23950 | 0.0 | - |
|
657 |
+
| 27.9720 | 24000 | 0.0 | - |
|
658 |
+
| 28.0303 | 24050 | 0.0 | - |
|
659 |
+
| 28.0886 | 24100 | 0.0 | - |
|
660 |
+
| 28.1469 | 24150 | 0.0 | - |
|
661 |
+
| 28.2051 | 24200 | 0.0 | - |
|
662 |
+
| 28.2634 | 24250 | 0.0 | - |
|
663 |
+
| 28.3217 | 24300 | 0.0 | - |
|
664 |
+
| 28.3800 | 24350 | 0.0 | - |
|
665 |
+
| 28.4382 | 24400 | 0.0 | - |
|
666 |
+
| 28.4965 | 24450 | 0.0 | - |
|
667 |
+
| 28.5548 | 24500 | 0.0 | - |
|
668 |
+
| 28.6131 | 24550 | 0.0 | - |
|
669 |
+
| 28.6713 | 24600 | 0.0 | - |
|
670 |
+
| 28.7296 | 24650 | 0.0 | - |
|
671 |
+
| 28.7879 | 24700 | 0.0 | - |
|
672 |
+
| 28.8462 | 24750 | 0.0 | - |
|
673 |
+
| 28.9044 | 24800 | 0.0 | - |
|
674 |
+
| 28.9627 | 24850 | 0.0 | - |
|
675 |
+
| 29.0210 | 24900 | 0.0 | - |
|
676 |
+
| 29.0793 | 24950 | 0.0 | - |
|
677 |
+
| 29.1375 | 25000 | 0.0 | - |
|
678 |
+
| 29.1958 | 25050 | 0.0 | - |
|
679 |
+
| 29.2541 | 25100 | 0.0 | - |
|
680 |
+
| 29.3124 | 25150 | 0.0 | - |
|
681 |
+
| 29.3706 | 25200 | 0.0 | - |
|
682 |
+
| 29.4289 | 25250 | 0.0 | - |
|
683 |
+
| 29.4872 | 25300 | 0.0 | - |
|
684 |
+
| 29.5455 | 25350 | 0.0 | - |
|
685 |
+
| 29.6037 | 25400 | 0.0 | - |
|
686 |
+
| 29.6620 | 25450 | 0.0 | - |
|
687 |
+
| 29.7203 | 25500 | 0.0 | - |
|
688 |
+
| 29.7786 | 25550 | 0.0 | - |
|
689 |
+
| 29.8368 | 25600 | 0.0 | - |
|
690 |
+
| 29.8951 | 25650 | 0.0 | - |
|
691 |
+
| 29.9534 | 25700 | 0.0 | - |
|
692 |
+
|
693 |
+
### Framework Versions
|
694 |
+
- Python: 3.10.12
|
695 |
+
- SetFit: 1.1.0
|
696 |
+
- Sentence Transformers: 3.3.1
|
697 |
+
- Transformers: 4.44.2
|
698 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
699 |
+
- Datasets: 3.2.0
|
700 |
+
- Tokenizers: 0.19.1
|
701 |
+
|
702 |
+
## Citation
|
703 |
+
|
704 |
+
### BibTeX
|
705 |
+
```bibtex
|
706 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
707 |
+
doi = {10.48550/ARXIV.2209.11055},
|
708 |
+
url = {https://arxiv.org/abs/2209.11055},
|
709 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
710 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
711 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
712 |
+
publisher = {arXiv},
|
713 |
+
year = {2022},
|
714 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
715 |
+
}
|
716 |
+
```
|
717 |
+
|
718 |
+
<!--
|
719 |
+
## Glossary
|
720 |
+
|
721 |
+
*Clearly define terms in order to be accessible across audiences.*
|
722 |
+
-->
|
723 |
+
|
724 |
+
<!--
|
725 |
+
## Model Card Authors
|
726 |
+
|
727 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
728 |
+
-->
|
729 |
+
|
730 |
+
<!--
|
731 |
+
## Model Card Contact
|
732 |
+
|
733 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
734 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_bt_test_flat_top",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34e46d802b9adbb7a1762405509a400e8ac75a90d99a82bb6662343b76f1c9c3
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8792427dd3ebad4a79c74c01d938538b419eafa5f2aaa94e1184a710d2977a8a
|
3 |
+
size 68607
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|