--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 돌반지 백일 호랑이 호랑이띠 목걸이 3.75g 토퍼없음_14k 아기목걸이 기본3푼줄 옐로우골드 출산/육아 > 유아동주얼리 > 순금돌반지 - text: '[국제금거래소] (순도99.9%) 고급 순금 돌반지 1.875g 복(福)_고급케이스 출산/육아 > 유아동주얼리 > 순금돌반지' - text: 베블링 순금 아기 돌팔찌 첫돌 백일 돌선물 3.75g 5.625g 7.5g 11.25g 3.75g_02.Happy 100 Days_국문 가는체 출산/육아 > 유아동주얼리 > 순금주얼리 - text: 별별나라 24k 순금 돌반지 조카 첫돌 아기백일 선물 3.75g 행운의 토끼 돌반지_기본 케이스 출산/육아 > 유아동주얼리 > 순금돌반지 - text: 바 탄생석 미아방지 실버세트/ 목걸이/ 팔찌 바 탄생석 미아방지 실버목걸이_1월(Garnet)_I타입(영문 우아체) 출산/육아 > 유아동주얼리 > 주얼리세트 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.0 | | | 4.0 | | | 2.0 | | | 5.0 | | | 3.0 | | | 1.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bc21") # Run inference preds = model("[국제금거래소] (순도99.9%) 고급 순금 돌반지 1.875g 복(福)_고급케이스 출산/육아 > 유아동주얼리 > 순금돌반지") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 15.7703 | 32 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 20 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | | 5.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0137 | 1 | 0.4867 | - | | 0.6849 | 50 | 0.4987 | - | | 1.3699 | 100 | 0.3808 | - | | 2.0548 | 150 | 0.1425 | - | | 2.7397 | 200 | 0.053 | - | | 3.4247 | 250 | 0.0037 | - | | 4.1096 | 300 | 0.0001 | - | | 4.7945 | 350 | 0.0001 | - | | 5.4795 | 400 | 0.0001 | - | | 6.1644 | 450 | 0.0001 | - | | 6.8493 | 500 | 0.0 | - | | 7.5342 | 550 | 0.0 | - | | 8.2192 | 600 | 0.0 | - | | 8.9041 | 650 | 0.0 | - | | 9.5890 | 700 | 0.0 | - | | 10.2740 | 750 | 0.0 | - | | 10.9589 | 800 | 0.0 | - | | 11.6438 | 850 | 0.0 | - | | 12.3288 | 900 | 0.0 | - | | 13.0137 | 950 | 0.0 | - | | 13.6986 | 1000 | 0.0 | - | | 14.3836 | 1050 | 0.0 | - | | 15.0685 | 1100 | 0.0 | - | | 15.7534 | 1150 | 0.0 | - | | 16.4384 | 1200 | 0.0 | - | | 17.1233 | 1250 | 0.0 | - | | 17.8082 | 1300 | 0.0 | - | | 18.4932 | 1350 | 0.0 | - | | 19.1781 | 1400 | 0.0 | - | | 19.8630 | 1450 | 0.0 | - | | 20.5479 | 1500 | 0.0 | - | | 21.2329 | 1550 | 0.0 | - | | 21.9178 | 1600 | 0.0 | - | | 22.6027 | 1650 | 0.0 | - | | 23.2877 | 1700 | 0.0 | - | | 23.9726 | 1750 | 0.0 | - | | 24.6575 | 1800 | 0.0 | - | | 25.3425 | 1850 | 0.0 | - | | 26.0274 | 1900 | 0.0 | - | | 26.7123 | 1950 | 0.0 | - | | 27.3973 | 2000 | 0.0 | - | | 28.0822 | 2050 | 0.0 | - | | 28.7671 | 2100 | 0.0 | - | | 29.4521 | 2150 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```