mindwrapped commited on
Commit
9f15072
·
1 Parent(s): a4135ca

Upload DQN MountainCar-v0 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -104.89 +/- 20.36
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **DQN** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **DQN** agent playing **MountainCar-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f7285183440>", "_build": "<function DQNPolicy._build at 0x7f72851834d0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f7285183560>", "forward": "<function DQNPolicy.forward at 0x7f72851835f0>", "_predict": "<function DQNPolicy._predict at 0x7f7285183680>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7285183710>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f72851837a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7285165f90>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAILYvUqI1jus1OEgRi8w9yQuH6OVkeRbNgfwlfJSzdrIBqcTEBKnPnEXZhU8jdB9SdIK5RV4WeTP6yUrZjYz+Dvd9mHs1RLlWX9LFBsM85VXVCQZYayDWh2GCkU4x9njerfQzo+66SAAYqsfUMHjto+FsDIcAcwpsKlib91LUAuv/CK4uBwnR80acwCl9rfDsAlIMkEdmJdLDWLJ+wnLPSi9VRO8sYE9WrGvNm4RyPUHcTYlGLia+rGhzSSZnQ8rXusunOehpaPnS0hvHY0YsSQQfV+6t+QX/CNB2xbYG3bqlsvRwAHOwZyrOwr36eeLTTvrWD3uRZqWmH/6H5trW1sAsugMzc9b/G6oswrnX/4uZqEbfXAW9oxhte9lZ/aNxOiBxz/hJvHcrq27GXoKGEwyZbNAv5LuLKFwhZKs3b42kISSpF1kd98H1E7nER9QUSlC9ErWCTi+Cv1d8DY4zr2y1DBFdkeDI0hT9W0+EkGF6TZXqGzWkK43vFBhnofZSknTVrIt8NfN24+436VIDuOXA1hQsB5+rlRaCIHuml4qemryJhTq5znpR3K5/esy6L2krKTob19GYef8MkYbBOiozVcNahGiyWnMV7PzZY6k1y243eM+HG2sYZrTcN9llDpg4sYqqSLB7O9PDSrW2D2sZf5OYd43S1cYhugc2ZTxulznS4tlZzKN9R5xDT6oTz9Vd9WCv8gJxb0+RNyQmeAYn9lWVJNb6J0UeulEWEwxju3ZMDTJMhvHZA0oy4Ma9Mi8o0FPqywrTA4jy+XnkXsH21mJayLAAhMd85mzgpdBROPPYJaD9lQ3q8wTc/JHCi/7BH1oQ4pWtw7UY0O++F9DNghmITA19Mhx10zl4Vbdph30rcibbBHORRPgbxvpXrWDiIuRpP4l9WgDuVPhNVikw8JXB2gELPbkgpEv7adnl5ODHZXxHyMaja2yGgjM8HCxZIm9IL8L4J1m4cmsYWhq4RV1vBWMqF6q2eeY2lISQmutmwymu9lNIW4qW5nB2JXE97ZpxxJDB3WBdMe3rk4Mioy5AK8wIYVavcq7qop8h+KDYgxKpYeo4XwpuKZyRhXI9NI2lCPfX0AI62156n8Js2MnSK4QAmV0tGsbAXkpcg0zy5tTK8aSacuV2RZxORAZ3QigyO6oNvrfkpIp7u7wKN0B8uks6q/qBKlDPXE5PTpdl1rt+ZaRpk2FuDP0KjqvV1jJL0+AvAk5hw2QOjMsQcdIoLiFjN4mcP3GvPhBF+JJ7d+7xIeeU/6MIKpWbNsHn2Dk4ov/+HRH7B9zkBHbQZa90N1P/YJUG/1pCK26LKfzaLM1xjlgLSxw7CKK8UiilkasoVavtlqrgSK37Qqr4VrmN7hfRJOTgROoJwQKc9hL7LpoSOkpLaD/QeFNvhs9XQj/sGskZxe7YhPUUvgkmPrTDx1BqOLyuhWmcNkIGAgwivUxdap9713ptnPMlEOJbDqBUsY2ebJwkzUskzuO/t0F/0lqv9V67m7+uMKPUxxhGQwRfZm8PLrh+o+Au3fj1P4WSqcf2X7DGvVDA5bh6h3SS/O+gptZekZxBf+j/aIBOB7Zdv0znldrrbXffEZr8EAq5hSpdCP1G8/y8izM26YAYq6LDXIJXcBMEXMgbkV61f2M6XThI5+lDQhlh7O5fPtwbCrP7n7qWDn0qvifhjCj1VFkn+aH7tHVJvyVOmu3SZQLsqgXmjeuCpcg7dDpXABin1Q7NWTeTsFhPWng1o7NeTvLB8qNGSSpiKBEAu1a85M3SgCOnSL5ItdE3YItnw7yDNqCCZkqhhF7hekwXg/lAnIgiW0Ev72mkX0rxirjGTXzSNaVAHx3HxYuBqWKJRec8ME777dFj12VoIOiGx0o6XfWwtVlQfrWPGWOiglmYJeP26M7c9mOHutkTmoEHWUyS1Dgksvg48AGLAXqSlm85MB54y31efR+kN0TayhtdLmZgco/kt9UUlTfeX1sCuswcPnneRCxx3aUpn7ZpYjJc7v5BB0UyAVlWtVwIPdq8kp6rIVekO96SYnbH3//YuULfXavVcEYLDPQFw1smu7KofYKKe33qWPOgc+oVbJWfX9+YU3HU55yb8vTKNu4EzWv2unVX41XL0Il8w7IfsvNRZiJiwWmQXJQjTDHRd3DCS4Sc/Md7y6AHFfbP9IQpLr7s+BF3PvZdHz2LkZgdmpFsl9cxIlyJW+J/9Rt+4KlKIXQlZT61QSlbFEUp8zIERkVYWZY9iSIPDkz21U6Cfyge0FfEYGfxfxOrOUTOuUGz7xPl9ZCm1qaxK08r9oDDIYJ9kyhsEvayDy6b+cD7WodC/Onr2V2I1mSp7KUj/7OzSK13biOotuF4QWUJlFG/zEfp8qxiZUD9ohoO8tgRO6+W4M/hL8WWH2CgglXDsARIhwLiDhiBu5nUjcINS76TFS3cuYgsnxfy6VtAHvBGTE4GQEHtHKicbDC8+nvJi11RI1pqD0HZRlQQUboajkfTSJip4u4p0zqnLpeuNEzEB8fPLvPT6s6I36rqP0mbFMg2SuTcTPRGTcKAZX9u/bNdSNegg79NcGuqFWvpw5TuMvVRJuVjZh5xJR2NfAQZ+8mdS1Cm/KFbUKqtUQjZChNcgjKTOenWZW3ddNYpSfQyBLle7e9NfRglDMFKaIvSwjKVOKKtF/1riznOiJVRnc6zmZ8jUSM0CQbuIvXGo1BqTgqobRlZHXTskbUuG5eN/sicDyvg4i2a5DIbk8sveb9FMxcbyk+mGMoK9zuT6163RbPO/0C62JSREuw+SIQHjAlrtypIBqeTUnGOQ/9+6U37d2+u3t96EMU+lCEAe6hd0p626uKHzeobiUDU1SwxB/iynhu4fFPy1xTF/zFWz59l9s1pd8zUCK7H4knHEz9mBOHRBfP2VCVeCY2mEoCsBl0ftk2DfupVvUcUW/FuUH4BBWDLfqlSY5iqsrba7sokYIoBv0dtIRv40fhNba7asVWS/QlaThUNISheKADHlPd/Ae5c8/MhL85nHQzjMGNQo41SdEMOICbom1uFe5Ku+ZVhqJx3DFXgfmq3nbHJTiuXtBX2w77Ef5XtcltxUkEMFxe8SCU+DG6/UvdjmTNsBIqcl40OahJ2j+Jyp7y3gw2jHJwQKcfJeBsnSVasVym61d2jCSNZNHzydrWi/2mjqy0W+HB3vclTQstzvvcjweO5TVsS+Dql3TJStQEgDp7C7rQtDl3hEeugkNXyGrBVh+KQdup5fb3IA6rUCicdRZoPcgsUCZd0NMWELNcP7reUMm7e6MYyZrQMxLqCOWjyCznRePjuhj+T2ftmlRNUJR0lGKMA3Bvc5RLjnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 900000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654492634.05217, "learning_rate": 0.004, "tensorboard_log": "runs/1ry9v8fg", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgvyBPv6C58LuVfYM+/+UNPYDXBb7kxF09JD/mPgrOvzyUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgTD9Nv6lTBryqgWM+z9kRPblIPb7pYGI9Q0LaPtKBvTyUdJRiLg=="}, "_episode_num": 4602, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8200008, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGjAAAAAAACMAWyUS8aMAXSUR0B+34V0tAcDdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B+4JaSs8xLdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B+44abWmP6dX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+45Hz6JqJdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+5BNh3JPqdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+5rM1TBIndX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B+6gUSIxgzdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+6t5AyEcsdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B+63EuQIUrdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B+7w4GUwBYdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B+8AIgNgBtdX2UKGgGR8BkQAAAAAAAaAdLomgIR0B+8uQDFId3dX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B+88ehf0EpdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0B+9R9hJAdGdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B++CDFqBVddX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B++KBRQ79ydX2UKGgGR8BkwAAAAAAAaAdLpmgIR0B++v7EYO2BdX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B+/cZpBX0YdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B/AIqc3EQ5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/AS0D2alUdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B/A01KoQ4CdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/BbKmsNlRdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/Bv531SOzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/BwmShakidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B/CgL5RCQcdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/Cu35N47jdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/C6Btk4FSdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/DOlenhsJdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/EJZgXuVpdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/EJ6LOzIFdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B/EMtAcDKYdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/EkLDye7MdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/FFIqbz9TdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B/FOGahHskdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/F0yvcJt0dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B/F8FFDv3KdX2UKGgGR8BhoAAAAAAAaAdLjWgIR0B/GPrqt5lfdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B/GzEZR8+idX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/HQQZn+Q2dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/HYpb2USqdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B/HorEtNBXdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B/IDOHFglXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/IgR15jYqdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B/I3klu3tsdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/JBcSoOx0dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/JhbPhQ3xdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/J20G/vfCdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B/KI2tMfzSdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0B/KhVmz0HydX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/K2+K0lZ6dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/LijXWe6JdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/LqcVgx8EdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0B/L0c0cfeUdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B/MNHOKO1fdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/Mm3x4IKMdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B/M+4gA6uGdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/NRFkQPI5dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/NkcCHRCydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/N/5P/JeWdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/ORSaVlf7dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/Oh3s5XEJdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B/On557gKndX2UKGgGR8BegAAAAAAAaAdLemgIR0B/PEIw/PgOdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0B/PFsqJ/G3dX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/QDyEtdzGdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B/QEV32VVxdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/QyCg9NeudX2UKGgGR8BnwAAAAAAAaAdLvmgIR0B/QzEpAlfJdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/RKtOmBOIdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/RgY8+zMSdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0B/SL5oGpuNdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/STDtPYWddX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/Sth5Pdl/dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/S9IEr5IpdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/TqEmICU5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/UB+H8CPqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/UC6tknTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/Ud5+pfhNdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/VAIkZ75VdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B/VAxqO939dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/VsJNTLntdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/V929tdiVdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/WYZJkGzKdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/WpRWLgn/dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/W5PXTVlPdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0B/XT0163RYdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/XoAXEZR9dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/XzF+/gzhdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0B/YDzd1uBMdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/YWIoE0SAdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/Ymqo60Y1dX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B/ZUDDCP6sdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/Zd4/u9eydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/Zxlg+hXbdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/aB4rz5GjdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/as5lvqC6dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/a0kt29tedX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B/bC0zCUHIdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B/bHy3CsOodX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B/cRLCemNzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 112376, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f7285159f80>", "add": "<function ReplayBuffer.add at 0x7f728515d050>", "sample": "<function ReplayBuffer.sample at 0x7f728515d0e0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f728515d170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f72851aae70>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 37, "_n_calls": 224999, "max_grad_norm": 10, "exploration_rate": 0.16300371999999996, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
dqn-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be4ec49bd726a5cda21718d2bf8a460b5adecc49d10f3c0b788bf8def061125f
3
+ size 1103283
dqn-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
dqn-MountainCar-v0/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f7285183440>",
8
+ "_build": "<function DQNPolicy._build at 0x7f72851834d0>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f7285183560>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f72851835f0>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f7285183680>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7285183710>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f72851837a0>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f7285165f90>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {
19
+ "net_arch": [
20
+ 256,
21
+ 256
22
+ ]
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 2
30
+ ],
31
+ "low": "[-1.2 -0.07]",
32
+ "high": "[0.6 0.07]",
33
+ "bounded_below": "[ True True]",
34
+ "bounded_above": "[ True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAILYvUqI1jus1OEgRi8w9yQuH6OVkeRbNgfwlfJSzdrIBqcTEBKnPnEXZhU8jdB9SdIK5RV4WeTP6yUrZjYz+Dvd9mHs1RLlWX9LFBsM85VXVCQZYayDWh2GCkU4x9njerfQzo+66SAAYqsfUMHjto+FsDIcAcwpsKlib91LUAuv/CK4uBwnR80acwCl9rfDsAlIMkEdmJdLDWLJ+wnLPSi9VRO8sYE9WrGvNm4RyPUHcTYlGLia+rGhzSSZnQ8rXusunOehpaPnS0hvHY0YsSQQfV+6t+QX/CNB2xbYG3bqlsvRwAHOwZyrOwr36eeLTTvrWD3uRZqWmH/6H5trW1sAsugMzc9b/G6oswrnX/4uZqEbfXAW9oxhte9lZ/aNxOiBxz/hJvHcrq27GXoKGEwyZbNAv5LuLKFwhZKs3b42kISSpF1kd98H1E7nER9QUSlC9ErWCTi+Cv1d8DY4zr2y1DBFdkeDI0hT9W0+EkGF6TZXqGzWkK43vFBhnofZSknTVrIt8NfN24+436VIDuOXA1hQsB5+rlRaCIHuml4qemryJhTq5znpR3K5/esy6L2krKTob19GYef8MkYbBOiozVcNahGiyWnMV7PzZY6k1y243eM+HG2sYZrTcN9llDpg4sYqqSLB7O9PDSrW2D2sZf5OYd43S1cYhugc2ZTxulznS4tlZzKN9R5xDT6oTz9Vd9WCv8gJxb0+RNyQmeAYn9lWVJNb6J0UeulEWEwxju3ZMDTJMhvHZA0oy4Ma9Mi8o0FPqywrTA4jy+XnkXsH21mJayLAAhMd85mzgpdBROPPYJaD9lQ3q8wTc/JHCi/7BH1oQ4pWtw7UY0O++F9DNghmITA19Mhx10zl4Vbdph30rcibbBHORRPgbxvpXrWDiIuRpP4l9WgDuVPhNVikw8JXB2gELPbkgpEv7adnl5ODHZXxHyMaja2yGgjM8HCxZIm9IL8L4J1m4cmsYWhq4RV1vBWMqF6q2eeY2lISQmutmwymu9lNIW4qW5nB2JXE97ZpxxJDB3WBdMe3rk4Mioy5AK8wIYVavcq7qop8h+KDYgxKpYeo4XwpuKZyRhXI9NI2lCPfX0AI62156n8Js2MnSK4QAmV0tGsbAXkpcg0zy5tTK8aSacuV2RZxORAZ3QigyO6oNvrfkpIp7u7wKN0B8uks6q/qBKlDPXE5PTpdl1rt+ZaRpk2FuDP0KjqvV1jJL0+AvAk5hw2QOjMsQcdIoLiFjN4mcP3GvPhBF+JJ7d+7xIeeU/6MIKpWbNsHn2Dk4ov/+HRH7B9zkBHbQZa90N1P/YJUG/1pCK26LKfzaLM1xjlgLSxw7CKK8UiilkasoVavtlqrgSK37Qqr4VrmN7hfRJOTgROoJwQKc9hL7LpoSOkpLaD/QeFNvhs9XQj/sGskZxe7YhPUUvgkmPrTDx1BqOLyuhWmcNkIGAgwivUxdap9713ptnPMlEOJbDqBUsY2ebJwkzUskzuO/t0F/0lqv9V67m7+uMKPUxxhGQwRfZm8PLrh+o+Au3fj1P4WSqcf2X7DGvVDA5bh6h3SS/O+gptZekZxBf+j/aIBOB7Zdv0znldrrbXffEZr8EAq5hSpdCP1G8/y8izM26YAYq6LDXIJXcBMEXMgbkV61f2M6XThI5+lDQhlh7O5fPtwbCrP7n7qWDn0qvifhjCj1VFkn+aH7tHVJvyVOmu3SZQLsqgXmjeuCpcg7dDpXABin1Q7NWTeTsFhPWng1o7NeTvLB8qNGSSpiKBEAu1a85M3SgCOnSL5ItdE3YItnw7yDNqCCZkqhhF7hekwXg/lAnIgiW0Ev72mkX0rxirjGTXzSNaVAHx3HxYuBqWKJRec8ME777dFj12VoIOiGx0o6XfWwtVlQfrWPGWOiglmYJeP26M7c9mOHutkTmoEHWUyS1Dgksvg48AGLAXqSlm85MB54y31efR+kN0TayhtdLmZgco/kt9UUlTfeX1sCuswcPnneRCxx3aUpn7ZpYjJc7v5BB0UyAVlWtVwIPdq8kp6rIVekO96SYnbH3//YuULfXavVcEYLDPQFw1smu7KofYKKe33qWPOgc+oVbJWfX9+YU3HU55yb8vTKNu4EzWv2unVX41XL0Il8w7IfsvNRZiJiwWmQXJQjTDHRd3DCS4Sc/Md7y6AHFfbP9IQpLr7s+BF3PvZdHz2LkZgdmpFsl9cxIlyJW+J/9Rt+4KlKIXQlZT61QSlbFEUp8zIERkVYWZY9iSIPDkz21U6Cfyge0FfEYGfxfxOrOUTOuUGz7xPl9ZCm1qaxK08r9oDDIYJ9kyhsEvayDy6b+cD7WodC/Onr2V2I1mSp7KUj/7OzSK13biOotuF4QWUJlFG/zEfp8qxiZUD9ohoO8tgRO6+W4M/hL8WWH2CgglXDsARIhwLiDhiBu5nUjcINS76TFS3cuYgsnxfy6VtAHvBGTE4GQEHtHKicbDC8+nvJi11RI1pqD0HZRlQQUboajkfTSJip4u4p0zqnLpeuNEzEB8fPLvPT6s6I36rqP0mbFMg2SuTcTPRGTcKAZX9u/bNdSNegg79NcGuqFWvpw5TuMvVRJuVjZh5xJR2NfAQZ+8mdS1Cm/KFbUKqtUQjZChNcgjKTOenWZW3ddNYpSfQyBLle7e9NfRglDMFKaIvSwjKVOKKtF/1riznOiJVRnc6zmZ8jUSM0CQbuIvXGo1BqTgqobRlZHXTskbUuG5eN/sicDyvg4i2a5DIbk8sveb9FMxcbyk+mGMoK9zuT6163RbPO/0C62JSREuw+SIQHjAlrtypIBqeTUnGOQ/9+6U37d2+u3t96EMU+lCEAe6hd0p626uKHzeobiUDU1SwxB/iynhu4fFPy1xTF/zFWz59l9s1pd8zUCK7H4knHEz9mBOHRBfP2VCVeCY2mEoCsBl0ftk2DfupVvUcUW/FuUH4BBWDLfqlSY5iqsrba7sokYIoBv0dtIRv40fhNba7asVWS/QlaThUNISheKADHlPd/Ae5c8/MhL85nHQzjMGNQo41SdEMOICbom1uFe5Ku+ZVhqJx3DFXgfmq3nbHJTiuXtBX2w77Ef5XtcltxUkEMFxe8SCU+DG6/UvdjmTNsBIqcl40OahJ2j+Jyp7y3gw2jHJwQKcfJeBsnSVasVym61d2jCSNZNHzydrWi/2mjqy0W+HB3vclTQstzvvcjweO5TVsS+Dql3TJStQEgDp7C7rQtDl3hEeugkNXyGrBVh+KQdup5fb3IA6rUCicdRZoPcgsUCZd0NMWELNcP7reUMm7e6MYyZrQMxLqCOWjyCznRePjuhj+T2ftmlRNUJR0lGKMA3Bvc5RLjnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
40
+ "n": 3,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 900000,
47
+ "_total_timesteps": 5000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1654492634.05217,
52
+ "learning_rate": 0.004,
53
+ "tensorboard_log": "runs/1ry9v8fg",
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgvyBPv6C58LuVfYM+/+UNPYDXBb7kxF09JD/mPgrOvzyUdJRiLg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
65
+ },
66
+ "_last_original_obs": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgTD9Nv6lTBryqgWM+z9kRPblIPb7pYGI9Q0LaPtKBvTyUdJRiLg=="
69
+ },
70
+ "_episode_num": 4602,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": 0.8200008,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGjAAAAAAACMAWyUS8aMAXSUR0B+34V0tAcDdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B+4JaSs8xLdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B+44abWmP6dX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+45Hz6JqJdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+5BNh3JPqdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+5rM1TBIndX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B+6gUSIxgzdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+6t5AyEcsdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B+63EuQIUrdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B+7w4GUwBYdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B+8AIgNgBtdX2UKGgGR8BkQAAAAAAAaAdLomgIR0B+8uQDFId3dX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B+88ehf0EpdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0B+9R9hJAdGdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B++CDFqBVddX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B++KBRQ79ydX2UKGgGR8BkwAAAAAAAaAdLpmgIR0B++v7EYO2BdX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B+/cZpBX0YdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B/AIqc3EQ5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/AS0D2alUdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B/A01KoQ4CdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/BbKmsNlRdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/Bv531SOzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/BwmShakidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B/CgL5RCQcdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/Cu35N47jdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/C6Btk4FSdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/DOlenhsJdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/EJZgXuVpdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/EJ6LOzIFdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B/EMtAcDKYdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/EkLDye7MdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/FFIqbz9TdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B/FOGahHskdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/F0yvcJt0dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B/F8FFDv3KdX2UKGgGR8BhoAAAAAAAaAdLjWgIR0B/GPrqt5lfdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B/GzEZR8+idX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/HQQZn+Q2dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/HYpb2USqdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B/HorEtNBXdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B/IDOHFglXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/IgR15jYqdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B/I3klu3tsdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/JBcSoOx0dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/JhbPhQ3xdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/J20G/vfCdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B/KI2tMfzSdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0B/KhVmz0HydX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/K2+K0lZ6dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/LijXWe6JdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/LqcVgx8EdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0B/L0c0cfeUdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B/MNHOKO1fdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/Mm3x4IKMdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B/M+4gA6uGdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/NRFkQPI5dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/NkcCHRCydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/N/5P/JeWdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/ORSaVlf7dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/Oh3s5XEJdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B/On557gKndX2UKGgGR8BegAAAAAAAaAdLemgIR0B/PEIw/PgOdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0B/PFsqJ/G3dX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/QDyEtdzGdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B/QEV32VVxdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/QyCg9NeudX2UKGgGR8BnwAAAAAAAaAdLvmgIR0B/QzEpAlfJdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/RKtOmBOIdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/RgY8+zMSdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0B/SL5oGpuNdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/STDtPYWddX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/Sth5Pdl/dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/S9IEr5IpdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/TqEmICU5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/UB+H8CPqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/UC6tknTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/Ud5+pfhNdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/VAIkZ75VdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B/VAxqO939dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/VsJNTLntdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/V929tdiVdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/WYZJkGzKdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/WpRWLgn/dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/W5PXTVlPdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0B/XT0163RYdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/XoAXEZR9dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/XzF+/gzhdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0B/YDzd1uBMdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/YWIoE0SAdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/Ymqo60Y1dX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B/ZUDDCP6sdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/Zd4/u9eydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/Zxlg+hXbdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/aB4rz5GjdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/as5lvqC6dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/a0kt29tedX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B/bC0zCUHIdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B/bHy3CsOodX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B/cRLCemNzdWUu"
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 112376,
83
+ "buffer_size": 10000,
84
+ "batch_size": 128,
85
+ "learning_starts": 1000,
86
+ "tau": 1.0,
87
+ "gamma": 0.98,
88
+ "gradient_steps": 8,
89
+ "optimize_memory_usage": false,
90
+ "replay_buffer_class": {
91
+ ":type:": "<class 'abc.ABCMeta'>",
92
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
93
+ "__module__": "stable_baselines3.common.buffers",
94
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
95
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f7285159f80>",
96
+ "add": "<function ReplayBuffer.add at 0x7f728515d050>",
97
+ "sample": "<function ReplayBuffer.sample at 0x7f728515d0e0>",
98
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f728515d170>",
99
+ "__abstractmethods__": "frozenset()",
100
+ "_abc_impl": "<_abc_data object at 0x7f72851aae70>"
101
+ },
102
+ "replay_buffer_kwargs": {},
103
+ "train_freq": {
104
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
105
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
106
+ },
107
+ "actor": null,
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.07,
111
+ "exploration_fraction": 0.2,
112
+ "target_update_interval": 37,
113
+ "_n_calls": 224999,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.16300371999999996,
116
+ "exploration_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
119
+ }
120
+ }
dqn-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c22226f02a6d94f3f14eab77171f6fe52f505bd92a90a4f74427ea2a3cf69235
3
+ size 542017
dqn-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09728af7462d30c9beee6f6c0e1754accede1f5020d10ca9a7bf1e654507f3f9
3
+ size 542721
dqn-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d609cc1634bb885df4515777b189862169c14cc8f10b8116202dad72333ae82
3
+ size 256109
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -104.885, "std_reward": 20.356615018219507, "is_deterministic": true, "n_eval_episodes": 200, "eval_datetime": "2022-06-06T06:07:38.128115"}