mindwrapped
commited on
Commit
·
9f15072
1
Parent(s):
a4135ca
Upload DQN MountainCar-v0 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- dqn-MountainCar-v0.zip +3 -0
- dqn-MountainCar-v0/_stable_baselines3_version +1 -0
- dqn-MountainCar-v0/data +120 -0
- dqn-MountainCar-v0/policy.optimizer.pth +3 -0
- dqn-MountainCar-v0/policy.pth +3 -0
- dqn-MountainCar-v0/pytorch_variables.pth +3 -0
- dqn-MountainCar-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -104.89 +/- 20.36
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f7285183440>", "_build": "<function DQNPolicy._build at 0x7f72851834d0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f7285183560>", "forward": "<function DQNPolicy.forward at 0x7f72851835f0>", "_predict": "<function DQNPolicy._predict at 0x7f7285183680>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7285183710>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f72851837a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7285165f90>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAILYvUqI1jus1OEgRi8w9yQuH6OVkeRbNgfwlfJSzdrIBqcTEBKnPnEXZhU8jdB9SdIK5RV4WeTP6yUrZjYz+Dvd9mHs1RLlWX9LFBsM85VXVCQZYayDWh2GCkU4x9njerfQzo+66SAAYqsfUMHjto+FsDIcAcwpsKlib91LUAuv/CK4uBwnR80acwCl9rfDsAlIMkEdmJdLDWLJ+wnLPSi9VRO8sYE9WrGvNm4RyPUHcTYlGLia+rGhzSSZnQ8rXusunOehpaPnS0hvHY0YsSQQfV+6t+QX/CNB2xbYG3bqlsvRwAHOwZyrOwr36eeLTTvrWD3uRZqWmH/6H5trW1sAsugMzc9b/G6oswrnX/4uZqEbfXAW9oxhte9lZ/aNxOiBxz/hJvHcrq27GXoKGEwyZbNAv5LuLKFwhZKs3b42kISSpF1kd98H1E7nER9QUSlC9ErWCTi+Cv1d8DY4zr2y1DBFdkeDI0hT9W0+EkGF6TZXqGzWkK43vFBhnofZSknTVrIt8NfN24+436VIDuOXA1hQsB5+rlRaCIHuml4qemryJhTq5znpR3K5/esy6L2krKTob19GYef8MkYbBOiozVcNahGiyWnMV7PzZY6k1y243eM+HG2sYZrTcN9llDpg4sYqqSLB7O9PDSrW2D2sZf5OYd43S1cYhugc2ZTxulznS4tlZzKN9R5xDT6oTz9Vd9WCv8gJxb0+RNyQmeAYn9lWVJNb6J0UeulEWEwxju3ZMDTJMhvHZA0oy4Ma9Mi8o0FPqywrTA4jy+XnkXsH21mJayLAAhMd85mzgpdBROPPYJaD9lQ3q8wTc/JHCi/7BH1oQ4pWtw7UY0O++F9DNghmITA19Mhx10zl4Vbdph30rcibbBHORRPgbxvpXrWDiIuRpP4l9WgDuVPhNVikw8JXB2gELPbkgpEv7adnl5ODHZXxHyMaja2yGgjM8HCxZIm9IL8L4J1m4cmsYWhq4RV1vBWMqF6q2eeY2lISQmutmwymu9lNIW4qW5nB2JXE97ZpxxJDB3WBdMe3rk4Mioy5AK8wIYVavcq7qop8h+KDYgxKpYeo4XwpuKZyRhXI9NI2lCPfX0AI62156n8Js2MnSK4QAmV0tGsbAXkpcg0zy5tTK8aSacuV2RZxORAZ3QigyO6oNvrfkpIp7u7wKN0B8uks6q/qBKlDPXE5PTpdl1rt+ZaRpk2FuDP0KjqvV1jJL0+AvAk5hw2QOjMsQcdIoLiFjN4mcP3GvPhBF+JJ7d+7xIeeU/6MIKpWbNsHn2Dk4ov/+HRH7B9zkBHbQZa90N1P/YJUG/1pCK26LKfzaLM1xjlgLSxw7CKK8UiilkasoVavtlqrgSK37Qqr4VrmN7hfRJOTgROoJwQKc9hL7LpoSOkpLaD/QeFNvhs9XQj/sGskZxe7YhPUUvgkmPrTDx1BqOLyuhWmcNkIGAgwivUxdap9713ptnPMlEOJbDqBUsY2ebJwkzUskzuO/t0F/0lqv9V67m7+uMKPUxxhGQwRfZm8PLrh+o+Au3fj1P4WSqcf2X7DGvVDA5bh6h3SS/O+gptZekZxBf+j/aIBOB7Zdv0znldrrbXffEZr8EAq5hSpdCP1G8/y8izM26YAYq6LDXIJXcBMEXMgbkV61f2M6XThI5+lDQhlh7O5fPtwbCrP7n7qWDn0qvifhjCj1VFkn+aH7tHVJvyVOmu3SZQLsqgXmjeuCpcg7dDpXABin1Q7NWTeTsFhPWng1o7NeTvLB8qNGSSpiKBEAu1a85M3SgCOnSL5ItdE3YItnw7yDNqCCZkqhhF7hekwXg/lAnIgiW0Ev72mkX0rxirjGTXzSNaVAHx3HxYuBqWKJRec8ME777dFj12VoIOiGx0o6XfWwtVlQfrWPGWOiglmYJeP26M7c9mOHutkTmoEHWUyS1Dgksvg48AGLAXqSlm85MB54y31efR+kN0TayhtdLmZgco/kt9UUlTfeX1sCuswcPnneRCxx3aUpn7ZpYjJc7v5BB0UyAVlWtVwIPdq8kp6rIVekO96SYnbH3//YuULfXavVcEYLDPQFw1smu7KofYKKe33qWPOgc+oVbJWfX9+YU3HU55yb8vTKNu4EzWv2unVX41XL0Il8w7IfsvNRZiJiwWmQXJQjTDHRd3DCS4Sc/Md7y6AHFfbP9IQpLr7s+BF3PvZdHz2LkZgdmpFsl9cxIlyJW+J/9Rt+4KlKIXQlZT61QSlbFEUp8zIERkVYWZY9iSIPDkz21U6Cfyge0FfEYGfxfxOrOUTOuUGz7xPl9ZCm1qaxK08r9oDDIYJ9kyhsEvayDy6b+cD7WodC/Onr2V2I1mSp7KUj/7OzSK13biOotuF4QWUJlFG/zEfp8qxiZUD9ohoO8tgRO6+W4M/hL8WWH2CgglXDsARIhwLiDhiBu5nUjcINS76TFS3cuYgsnxfy6VtAHvBGTE4GQEHtHKicbDC8+nvJi11RI1pqD0HZRlQQUboajkfTSJip4u4p0zqnLpeuNEzEB8fPLvPT6s6I36rqP0mbFMg2SuTcTPRGTcKAZX9u/bNdSNegg79NcGuqFWvpw5TuMvVRJuVjZh5xJR2NfAQZ+8mdS1Cm/KFbUKqtUQjZChNcgjKTOenWZW3ddNYpSfQyBLle7e9NfRglDMFKaIvSwjKVOKKtF/1riznOiJVRnc6zmZ8jUSM0CQbuIvXGo1BqTgqobRlZHXTskbUuG5eN/sicDyvg4i2a5DIbk8sveb9FMxcbyk+mGMoK9zuT6163RbPO/0C62JSREuw+SIQHjAlrtypIBqeTUnGOQ/9+6U37d2+u3t96EMU+lCEAe6hd0p626uKHzeobiUDU1SwxB/iynhu4fFPy1xTF/zFWz59l9s1pd8zUCK7H4knHEz9mBOHRBfP2VCVeCY2mEoCsBl0ftk2DfupVvUcUW/FuUH4BBWDLfqlSY5iqsrba7sokYIoBv0dtIRv40fhNba7asVWS/QlaThUNISheKADHlPd/Ae5c8/MhL85nHQzjMGNQo41SdEMOICbom1uFe5Ku+ZVhqJx3DFXgfmq3nbHJTiuXtBX2w77Ef5XtcltxUkEMFxe8SCU+DG6/UvdjmTNsBIqcl40OahJ2j+Jyp7y3gw2jHJwQKcfJeBsnSVasVym61d2jCSNZNHzydrWi/2mjqy0W+HB3vclTQstzvvcjweO5TVsS+Dql3TJStQEgDp7C7rQtDl3hEeugkNXyGrBVh+KQdup5fb3IA6rUCicdRZoPcgsUCZd0NMWELNcP7reUMm7e6MYyZrQMxLqCOWjyCznRePjuhj+T2ftmlRNUJR0lGKMA3Bvc5RLjnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 900000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654492634.05217, "learning_rate": 0.004, "tensorboard_log": "runs/1ry9v8fg", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgvyBPv6C58LuVfYM+/+UNPYDXBb7kxF09JD/mPgrOvzyUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgTD9Nv6lTBryqgWM+z9kRPblIPb7pYGI9Q0LaPtKBvTyUdJRiLg=="}, "_episode_num": 4602, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8200008, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGjAAAAAAACMAWyUS8aMAXSUR0B+34V0tAcDdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B+4JaSs8xLdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B+44abWmP6dX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+45Hz6JqJdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+5BNh3JPqdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+5rM1TBIndX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B+6gUSIxgzdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+6t5AyEcsdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B+63EuQIUrdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B+7w4GUwBYdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B+8AIgNgBtdX2UKGgGR8BkQAAAAAAAaAdLomgIR0B+8uQDFId3dX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B+88ehf0EpdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0B+9R9hJAdGdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B++CDFqBVddX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B++KBRQ79ydX2UKGgGR8BkwAAAAAAAaAdLpmgIR0B++v7EYO2BdX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B+/cZpBX0YdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B/AIqc3EQ5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/AS0D2alUdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B/A01KoQ4CdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/BbKmsNlRdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/Bv531SOzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/BwmShakidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B/CgL5RCQcdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/Cu35N47jdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/C6Btk4FSdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/DOlenhsJdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/EJZgXuVpdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/EJ6LOzIFdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B/EMtAcDKYdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/EkLDye7MdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/FFIqbz9TdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B/FOGahHskdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/F0yvcJt0dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B/F8FFDv3KdX2UKGgGR8BhoAAAAAAAaAdLjWgIR0B/GPrqt5lfdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B/GzEZR8+idX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/HQQZn+Q2dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/HYpb2USqdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B/HorEtNBXdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B/IDOHFglXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/IgR15jYqdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B/I3klu3tsdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/JBcSoOx0dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/JhbPhQ3xdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/J20G/vfCdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B/KI2tMfzSdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0B/KhVmz0HydX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/K2+K0lZ6dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/LijXWe6JdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/LqcVgx8EdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0B/L0c0cfeUdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B/MNHOKO1fdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/Mm3x4IKMdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B/M+4gA6uGdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/NRFkQPI5dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/NkcCHRCydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/N/5P/JeWdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/ORSaVlf7dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/Oh3s5XEJdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B/On557gKndX2UKGgGR8BegAAAAAAAaAdLemgIR0B/PEIw/PgOdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0B/PFsqJ/G3dX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/QDyEtdzGdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B/QEV32VVxdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/QyCg9NeudX2UKGgGR8BnwAAAAAAAaAdLvmgIR0B/QzEpAlfJdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/RKtOmBOIdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/RgY8+zMSdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0B/SL5oGpuNdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/STDtPYWddX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/Sth5Pdl/dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/S9IEr5IpdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/TqEmICU5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/UB+H8CPqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/UC6tknTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/Ud5+pfhNdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/VAIkZ75VdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B/VAxqO939dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/VsJNTLntdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/V929tdiVdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/WYZJkGzKdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/WpRWLgn/dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/W5PXTVlPdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0B/XT0163RYdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/XoAXEZR9dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/XzF+/gzhdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0B/YDzd1uBMdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/YWIoE0SAdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/Ymqo60Y1dX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B/ZUDDCP6sdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/Zd4/u9eydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/Zxlg+hXbdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/aB4rz5GjdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/as5lvqC6dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/a0kt29tedX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B/bC0zCUHIdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B/bHy3CsOodX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B/cRLCemNzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 112376, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f7285159f80>", "add": "<function ReplayBuffer.add at 0x7f728515d050>", "sample": "<function ReplayBuffer.sample at 0x7f728515d0e0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f728515d170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f72851aae70>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 37, "_n_calls": 224999, "max_grad_norm": 10, "exploration_rate": 0.16300371999999996, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
dqn-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be4ec49bd726a5cda21718d2bf8a460b5adecc49d10f3c0b788bf8def061125f
|
3 |
+
size 1103283
|
dqn-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
dqn-MountainCar-v0/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f7285183440>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f72851834d0>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f7285183560>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f72851835f0>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f7285183680>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7285183710>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f72851837a0>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7f7285165f90>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {
|
19 |
+
"net_arch": [
|
20 |
+
256,
|
21 |
+
256
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
2
|
30 |
+
],
|
31 |
+
"low": "[-1.2 -0.07]",
|
32 |
+
"high": "[0.6 0.07]",
|
33 |
+
"bounded_below": "[ True True]",
|
34 |
+
"bounded_above": "[ True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAILYvUqI1jus1OEgRi8w9yQuH6OVkeRbNgfwlfJSzdrIBqcTEBKnPnEXZhU8jdB9SdIK5RV4WeTP6yUrZjYz+Dvd9mHs1RLlWX9LFBsM85VXVCQZYayDWh2GCkU4x9njerfQzo+66SAAYqsfUMHjto+FsDIcAcwpsKlib91LUAuv/CK4uBwnR80acwCl9rfDsAlIMkEdmJdLDWLJ+wnLPSi9VRO8sYE9WrGvNm4RyPUHcTYlGLia+rGhzSSZnQ8rXusunOehpaPnS0hvHY0YsSQQfV+6t+QX/CNB2xbYG3bqlsvRwAHOwZyrOwr36eeLTTvrWD3uRZqWmH/6H5trW1sAsugMzc9b/G6oswrnX/4uZqEbfXAW9oxhte9lZ/aNxOiBxz/hJvHcrq27GXoKGEwyZbNAv5LuLKFwhZKs3b42kISSpF1kd98H1E7nER9QUSlC9ErWCTi+Cv1d8DY4zr2y1DBFdkeDI0hT9W0+EkGF6TZXqGzWkK43vFBhnofZSknTVrIt8NfN24+436VIDuOXA1hQsB5+rlRaCIHuml4qemryJhTq5znpR3K5/esy6L2krKTob19GYef8MkYbBOiozVcNahGiyWnMV7PzZY6k1y243eM+HG2sYZrTcN9llDpg4sYqqSLB7O9PDSrW2D2sZf5OYd43S1cYhugc2ZTxulznS4tlZzKN9R5xDT6oTz9Vd9WCv8gJxb0+RNyQmeAYn9lWVJNb6J0UeulEWEwxju3ZMDTJMhvHZA0oy4Ma9Mi8o0FPqywrTA4jy+XnkXsH21mJayLAAhMd85mzgpdBROPPYJaD9lQ3q8wTc/JHCi/7BH1oQ4pWtw7UY0O++F9DNghmITA19Mhx10zl4Vbdph30rcibbBHORRPgbxvpXrWDiIuRpP4l9WgDuVPhNVikw8JXB2gELPbkgpEv7adnl5ODHZXxHyMaja2yGgjM8HCxZIm9IL8L4J1m4cmsYWhq4RV1vBWMqF6q2eeY2lISQmutmwymu9lNIW4qW5nB2JXE97ZpxxJDB3WBdMe3rk4Mioy5AK8wIYVavcq7qop8h+KDYgxKpYeo4XwpuKZyRhXI9NI2lCPfX0AI62156n8Js2MnSK4QAmV0tGsbAXkpcg0zy5tTK8aSacuV2RZxORAZ3QigyO6oNvrfkpIp7u7wKN0B8uks6q/qBKlDPXE5PTpdl1rt+ZaRpk2FuDP0KjqvV1jJL0+AvAk5hw2QOjMsQcdIoLiFjN4mcP3GvPhBF+JJ7d+7xIeeU/6MIKpWbNsHn2Dk4ov/+HRH7B9zkBHbQZa90N1P/YJUG/1pCK26LKfzaLM1xjlgLSxw7CKK8UiilkasoVavtlqrgSK37Qqr4VrmN7hfRJOTgROoJwQKc9hL7LpoSOkpLaD/QeFNvhs9XQj/sGskZxe7YhPUUvgkmPrTDx1BqOLyuhWmcNkIGAgwivUxdap9713ptnPMlEOJbDqBUsY2ebJwkzUskzuO/t0F/0lqv9V67m7+uMKPUxxhGQwRfZm8PLrh+o+Au3fj1P4WSqcf2X7DGvVDA5bh6h3SS/O+gptZekZxBf+j/aIBOB7Zdv0znldrrbXffEZr8EAq5hSpdCP1G8/y8izM26YAYq6LDXIJXcBMEXMgbkV61f2M6XThI5+lDQhlh7O5fPtwbCrP7n7qWDn0qvifhjCj1VFkn+aH7tHVJvyVOmu3SZQLsqgXmjeuCpcg7dDpXABin1Q7NWTeTsFhPWng1o7NeTvLB8qNGSSpiKBEAu1a85M3SgCOnSL5ItdE3YItnw7yDNqCCZkqhhF7hekwXg/lAnIgiW0Ev72mkX0rxirjGTXzSNaVAHx3HxYuBqWKJRec8ME777dFj12VoIOiGx0o6XfWwtVlQfrWPGWOiglmYJeP26M7c9mOHutkTmoEHWUyS1Dgksvg48AGLAXqSlm85MB54y31efR+kN0TayhtdLmZgco/kt9UUlTfeX1sCuswcPnneRCxx3aUpn7ZpYjJc7v5BB0UyAVlWtVwIPdq8kp6rIVekO96SYnbH3//YuULfXavVcEYLDPQFw1smu7KofYKKe33qWPOgc+oVbJWfX9+YU3HU55yb8vTKNu4EzWv2unVX41XL0Il8w7IfsvNRZiJiwWmQXJQjTDHRd3DCS4Sc/Md7y6AHFfbP9IQpLr7s+BF3PvZdHz2LkZgdmpFsl9cxIlyJW+J/9Rt+4KlKIXQlZT61QSlbFEUp8zIERkVYWZY9iSIPDkz21U6Cfyge0FfEYGfxfxOrOUTOuUGz7xPl9ZCm1qaxK08r9oDDIYJ9kyhsEvayDy6b+cD7WodC/Onr2V2I1mSp7KUj/7OzSK13biOotuF4QWUJlFG/zEfp8qxiZUD9ohoO8tgRO6+W4M/hL8WWH2CgglXDsARIhwLiDhiBu5nUjcINS76TFS3cuYgsnxfy6VtAHvBGTE4GQEHtHKicbDC8+nvJi11RI1pqD0HZRlQQUboajkfTSJip4u4p0zqnLpeuNEzEB8fPLvPT6s6I36rqP0mbFMg2SuTcTPRGTcKAZX9u/bNdSNegg79NcGuqFWvpw5TuMvVRJuVjZh5xJR2NfAQZ+8mdS1Cm/KFbUKqtUQjZChNcgjKTOenWZW3ddNYpSfQyBLle7e9NfRglDMFKaIvSwjKVOKKtF/1riznOiJVRnc6zmZ8jUSM0CQbuIvXGo1BqTgqobRlZHXTskbUuG5eN/sicDyvg4i2a5DIbk8sveb9FMxcbyk+mGMoK9zuT6163RbPO/0C62JSREuw+SIQHjAlrtypIBqeTUnGOQ/9+6U37d2+u3t96EMU+lCEAe6hd0p626uKHzeobiUDU1SwxB/iynhu4fFPy1xTF/zFWz59l9s1pd8zUCK7H4knHEz9mBOHRBfP2VCVeCY2mEoCsBl0ftk2DfupVvUcUW/FuUH4BBWDLfqlSY5iqsrba7sokYIoBv0dtIRv40fhNba7asVWS/QlaThUNISheKADHlPd/Ae5c8/MhL85nHQzjMGNQo41SdEMOICbom1uFe5Ku+ZVhqJx3DFXgfmq3nbHJTiuXtBX2w77Ef5XtcltxUkEMFxe8SCU+DG6/UvdjmTNsBIqcl40OahJ2j+Jyp7y3gw2jHJwQKcfJeBsnSVasVym61d2jCSNZNHzydrWi/2mjqy0W+HB3vclTQstzvvcjweO5TVsS+Dql3TJStQEgDp7C7rQtDl3hEeugkNXyGrBVh+KQdup5fb3IA6rUCicdRZoPcgsUCZd0NMWELNcP7reUMm7e6MYyZrQMxLqCOWjyCznRePjuhj+T2ftmlRNUJR0lGKMA3Bvc5RLjnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"n": 3,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 900000,
|
47 |
+
"_total_timesteps": 5000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1654492634.05217,
|
52 |
+
"learning_rate": 0.004,
|
53 |
+
"tensorboard_log": "runs/1ry9v8fg",
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgvyBPv6C58LuVfYM+/+UNPYDXBb7kxF09JD/mPgrOvzyUdJRiLg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgTD9Nv6lTBryqgWM+z9kRPblIPb7pYGI9Q0LaPtKBvTyUdJRiLg=="
|
69 |
+
},
|
70 |
+
"_episode_num": 4602,
|
71 |
+
"use_sde": false,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": 0.8200008,
|
74 |
+
"ep_info_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGjAAAAAAACMAWyUS8aMAXSUR0B+34V0tAcDdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B+4JaSs8xLdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B+44abWmP6dX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+45Hz6JqJdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B+5BNh3JPqdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+5rM1TBIndX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B+6gUSIxgzdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B+6t5AyEcsdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B+63EuQIUrdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B+7w4GUwBYdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B+8AIgNgBtdX2UKGgGR8BkQAAAAAAAaAdLomgIR0B+8uQDFId3dX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B+88ehf0EpdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0B+9R9hJAdGdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B++CDFqBVddX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B++KBRQ79ydX2UKGgGR8BkwAAAAAAAaAdLpmgIR0B++v7EYO2BdX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B+/cZpBX0YdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B/AIqc3EQ5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/AS0D2alUdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B/A01KoQ4CdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/BbKmsNlRdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/Bv531SOzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/BwmShakidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B/CgL5RCQcdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/Cu35N47jdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/C6Btk4FSdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/DOlenhsJdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/EJZgXuVpdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/EJ6LOzIFdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B/EMtAcDKYdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/EkLDye7MdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/FFIqbz9TdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B/FOGahHskdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/F0yvcJt0dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B/F8FFDv3KdX2UKGgGR8BhoAAAAAAAaAdLjWgIR0B/GPrqt5lfdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B/GzEZR8+idX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/HQQZn+Q2dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/HYpb2USqdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B/HorEtNBXdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B/IDOHFglXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/IgR15jYqdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B/I3klu3tsdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/JBcSoOx0dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/JhbPhQ3xdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/J20G/vfCdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0B/KI2tMfzSdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0B/KhVmz0HydX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/K2+K0lZ6dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/LijXWe6JdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/LqcVgx8EdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0B/L0c0cfeUdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B/MNHOKO1fdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/Mm3x4IKMdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B/M+4gA6uGdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/NRFkQPI5dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/NkcCHRCydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/N/5P/JeWdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B/ORSaVlf7dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B/Oh3s5XEJdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B/On557gKndX2UKGgGR8BegAAAAAAAaAdLemgIR0B/PEIw/PgOdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0B/PFsqJ/G3dX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/QDyEtdzGdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B/QEV32VVxdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/QyCg9NeudX2UKGgGR8BnwAAAAAAAaAdLvmgIR0B/QzEpAlfJdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B/RKtOmBOIdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/RgY8+zMSdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0B/SL5oGpuNdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0B/STDtPYWddX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B/Sth5Pdl/dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B/S9IEr5IpdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0B/TqEmICU5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0B/UB+H8CPqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/UC6tknTidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B/Ud5+pfhNdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B/VAIkZ75VdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B/VAxqO939dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B/VsJNTLntdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B/V929tdiVdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B/WYZJkGzKdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B/WpRWLgn/dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/W5PXTVlPdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0B/XT0163RYdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B/XoAXEZR9dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/XzF+/gzhdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0B/YDzd1uBMdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B/YWIoE0SAdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B/Ymqo60Y1dX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B/ZUDDCP6sdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B/Zd4/u9eydX2UKGgGR8BkQAAAAAAAaAdLomgIR0B/Zxlg+hXbdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0B/aB4rz5GjdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0B/as5lvqC6dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0B/a0kt29tedX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B/bC0zCUHIdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B/bHy3CsOodX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B/cRLCemNzdWUu"
|
77 |
+
},
|
78 |
+
"ep_success_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
81 |
+
},
|
82 |
+
"_n_updates": 112376,
|
83 |
+
"buffer_size": 10000,
|
84 |
+
"batch_size": 128,
|
85 |
+
"learning_starts": 1000,
|
86 |
+
"tau": 1.0,
|
87 |
+
"gamma": 0.98,
|
88 |
+
"gradient_steps": 8,
|
89 |
+
"optimize_memory_usage": false,
|
90 |
+
"replay_buffer_class": {
|
91 |
+
":type:": "<class 'abc.ABCMeta'>",
|
92 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
93 |
+
"__module__": "stable_baselines3.common.buffers",
|
94 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
95 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f7285159f80>",
|
96 |
+
"add": "<function ReplayBuffer.add at 0x7f728515d050>",
|
97 |
+
"sample": "<function ReplayBuffer.sample at 0x7f728515d0e0>",
|
98 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f728515d170>",
|
99 |
+
"__abstractmethods__": "frozenset()",
|
100 |
+
"_abc_impl": "<_abc_data object at 0x7f72851aae70>"
|
101 |
+
},
|
102 |
+
"replay_buffer_kwargs": {},
|
103 |
+
"train_freq": {
|
104 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
105 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
106 |
+
},
|
107 |
+
"actor": null,
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.07,
|
111 |
+
"exploration_fraction": 0.2,
|
112 |
+
"target_update_interval": 37,
|
113 |
+
"_n_calls": 224999,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.16300371999999996,
|
116 |
+
"exploration_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
119 |
+
}
|
120 |
+
}
|
dqn-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c22226f02a6d94f3f14eab77171f6fe52f505bd92a90a4f74427ea2a3cf69235
|
3 |
+
size 542017
|
dqn-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09728af7462d30c9beee6f6c0e1754accede1f5020d10ca9a7bf1e654507f3f9
|
3 |
+
size 542721
|
dqn-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dqn-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d609cc1634bb885df4515777b189862169c14cc8f10b8116202dad72333ae82
|
3 |
+
size 256109
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -104.885, "std_reward": 20.356615018219507, "is_deterministic": true, "n_eval_episodes": 200, "eval_datetime": "2022-06-06T06:07:38.128115"}
|