Update README.md
Browse files
README.md
CHANGED
@@ -5,197 +5,167 @@ tags: []
|
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
+
ProtST for binary localization
|
9 |
+
|
10 |
+
## Running script
|
11 |
+
```python
|
12 |
+
from transformers import AutoModel, AutoTokenizer, HfArgumentParser, TrainingArguments, Trainer
|
13 |
+
from transformers.data.data_collator import DataCollatorForLanguageModeling, DataCollatorForTokenClassification, DataCollatorWithPadding
|
14 |
+
from transformers.trainer_pt_utils import get_parameter_names
|
15 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
16 |
+
from datasets import load_dataset
|
17 |
+
import functools
|
18 |
+
import numpy as np
|
19 |
+
from sklearn.metrics import accuracy_score, matthews_corrcoef
|
20 |
+
import sys
|
21 |
+
import torch
|
22 |
+
import logging
|
23 |
+
import datasets
|
24 |
+
import transformers
|
25 |
+
|
26 |
+
logging.basicConfig(level=logging.INFO)
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
def create_optimizer(opt_model, lr_ratio=0.1):
|
30 |
+
head_names = []
|
31 |
+
for n, p in opt_model.named_parameters():
|
32 |
+
if "classifier" in n:
|
33 |
+
head_names.append(n)
|
34 |
+
else:
|
35 |
+
p.requires_grad = False
|
36 |
+
# turn a list of tuple to 2 lists
|
37 |
+
for n, p in opt_model.named_parameters():
|
38 |
+
if n in head_names:
|
39 |
+
assert p.requires_grad
|
40 |
+
backbone_names = []
|
41 |
+
for n, p in opt_model.named_parameters():
|
42 |
+
if n not in head_names and p.requires_grad:
|
43 |
+
backbone_names.append(n)
|
44 |
+
# for weight_decay policy, see
|
45 |
+
# https://github.com/huggingface/transformers/blob/50573c648ae953dcc1b94d663651f07fb02268f4/src/transformers/trainer.py#L947
|
46 |
+
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS) # forbidden layer norm
|
47 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
48 |
+
# training_args.learning_rate
|
49 |
+
head_decay_parameters = [name for name in head_names if name in decay_parameters]
|
50 |
+
head_not_decay_parameters = [name for name in head_names if name not in decay_parameters]
|
51 |
+
# training_args.learning_rate * model_config.lr_ratio
|
52 |
+
backbone_decay_parameters = [name for name in backbone_names if name in decay_parameters]
|
53 |
+
backbone_not_decay_parameters = [name for name in backbone_names if name not in decay_parameters]
|
54 |
+
optimizer_grouped_parameters = [
|
55 |
+
{
|
56 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in head_decay_parameters and p.requires_grad)],
|
57 |
+
"weight_decay": training_args.weight_decay,
|
58 |
+
"lr": training_args.learning_rate
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in backbone_decay_parameters and p.requires_grad)],
|
62 |
+
"weight_decay": training_args.weight_decay,
|
63 |
+
"lr": training_args.learning_rate * lr_ratio
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in head_not_decay_parameters and p.requires_grad)],
|
67 |
+
"weight_decay": 0.0,
|
68 |
+
"lr": training_args.learning_rate
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in backbone_not_decay_parameters and p.requires_grad)],
|
72 |
+
"weight_decay": 0.0,
|
73 |
+
"lr": training_args.learning_rate * lr_ratio
|
74 |
+
},
|
75 |
+
]
|
76 |
+
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
77 |
+
optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
|
78 |
+
|
79 |
+
return optimizer
|
80 |
+
|
81 |
+
def create_scheduler(training_args, optimizer):
|
82 |
+
from transformers.optimization import get_scheduler
|
83 |
+
return get_scheduler(
|
84 |
+
training_args.lr_scheduler_type,
|
85 |
+
optimizer=optimizer if optimizer is None else optimizer,
|
86 |
+
num_warmup_steps=training_args.get_warmup_steps(training_args.max_steps),
|
87 |
+
num_training_steps=training_args.max_steps,
|
88 |
+
)
|
89 |
+
|
90 |
+
def compute_metrics(eval_preds):
|
91 |
+
probs, labels = eval_preds
|
92 |
+
preds = np.argmax(probs, axis=-1)
|
93 |
+
result = {"acc": accuracy_score(labels, preds), "mcc": matthews_corrcoef(labels, preds)}
|
94 |
+
|
95 |
+
def preprocess_logits_for_metrics(logits, labels):
|
96 |
+
return torch.softmax(logits, dim=-1)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
device = torch.device("cpu")
|
101 |
+
raw_dataset = load_dataset("Jiqing/ProtST-BinaryLocalization")
|
102 |
+
model = AutoModel.from_pretrained("Jiqing/protst-esm1b-for-sequential-classification", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
|
103 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
|
104 |
+
|
105 |
+
output_dir = "/home/jiqingfe/protst/protst_2/ProtST-HuggingFace/output_dir/ProtSTModel/default/ESM-1b_PubMedBERT-abs/240123_015856"
|
106 |
+
training_args = {'output_dir': output_dir, 'overwrite_output_dir': True, 'do_train': True, 'per_device_train_batch_size': 32, 'gradient_accumulation_steps': 1, \
|
107 |
+
'learning_rate': 5e-05, 'weight_decay': 0, 'num_train_epochs': 100, 'max_steps': -1, 'lr_scheduler_type': 'constant', 'do_eval': True, \
|
108 |
+
'evaluation_strategy': 'epoch', 'per_device_eval_batch_size': 32, 'logging_strategy': 'epoch', 'save_strategy': 'epoch', 'save_steps': 820, \
|
109 |
+
'dataloader_num_workers': 0, 'run_name': 'downstream_esm1b_localization_fix', 'optim': 'adamw_torch', 'resume_from_checkpoint': False, \
|
110 |
+
'label_names': ['labels'], 'load_best_model_at_end': True, 'metric_for_best_model': 'accuracy'}
|
111 |
+
training_args = HfArgumentParser(TrainingArguments).parse_dict(training_args, allow_extra_keys=False)[0]
|
112 |
+
|
113 |
+
def tokenize_protein(example, tokenizer=None):
|
114 |
+
protein_seq = example["prot_seq"]
|
115 |
+
protein_seq_str = tokenizer(protein_seq, add_special_tokens=True)
|
116 |
+
example["input_ids"] = protein_seq_str["input_ids"]
|
117 |
+
example["attention_mask"] = protein_seq_str["attention_mask"]
|
118 |
+
example["labels"] = example["localization"]
|
119 |
+
|
120 |
+
return example
|
121 |
+
|
122 |
+
func_tokenize_protein = functools.partial(tokenize_protein, tokenizer=tokenizer)
|
123 |
+
|
124 |
+
for split in ["train", "validation", "test"]:
|
125 |
+
raw_dataset[split] = raw_dataset[split].map(func_tokenize_protein, batched=False, remove_columns=["Unnamed: 0", "prot_seq", "localization"])
|
126 |
+
|
127 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.0)
|
128 |
+
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
|
129 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
130 |
+
|
131 |
+
transformers.utils.logging.set_verbosity_info()
|
132 |
+
log_level = training_args.get_process_log_level()
|
133 |
+
logger.setLevel(log_level)
|
134 |
+
|
135 |
+
optimizer = create_optimizer(model)
|
136 |
+
scheduler = create_scheduler(training_args, optimizer)
|
137 |
+
|
138 |
+
# build trainer
|
139 |
+
trainer = Trainer(
|
140 |
+
model=model,
|
141 |
+
args=training_args,
|
142 |
+
train_dataset=raw_dataset["train"],
|
143 |
+
eval_dataset=raw_dataset["validation"],
|
144 |
+
data_collator=data_collator,
|
145 |
+
optimizers=(optimizer, scheduler),
|
146 |
+
compute_metrics=compute_metrics,
|
147 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
148 |
+
)
|
149 |
+
|
150 |
+
train_result = trainer.train()
|
151 |
+
|
152 |
+
trainer.save_model()
|
153 |
+
# Saves the tokenizer too for easy upload
|
154 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
155 |
+
|
156 |
+
metrics = train_result.metrics
|
157 |
+
metrics["train_samples"] = len(raw_dataset["train"])
|
158 |
+
|
159 |
+
trainer.log_metrics("train", metrics)
|
160 |
+
trainer.save_metrics("train", metrics)
|
161 |
+
trainer.save_state()
|
162 |
+
|
163 |
+
metric = trainer.evaluate(raw_dataset["test"], metric_key_prefix="test")
|
164 |
+
print("test metric: ", metric)
|
165 |
+
|
166 |
+
metric = trainer.evaluate(raw_dataset["validation"], metric_key_prefix="valid")
|
167 |
+
print("valid metric: ", metric)
|
168 |
+
```
|
169 |
|
170 |
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|