File size: 4,546 Bytes
f3c3b34 6a4b6be f3c3b34 6a4b6be f3c3b34 6a4b6be f3c3b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
language:
- pl
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large v3 - impaired polish speech v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large v3 - impaired polish speech v4
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6501
- Wer: 56.9170
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.0749 | 0.1 | 2 | 2.6171 | 189.7233 |
| 1.9538 | 0.2 | 4 | 2.5450 | 189.7233 |
| 2.3076 | 0.3 | 6 | 2.2305 | 190.5138 |
| 1.7689 | 0.4 | 8 | 1.5214 | 100.0 |
| 1.1168 | 0.5 | 10 | 1.0848 | 100.0 |
| 1.5201 | 0.6 | 12 | 0.9314 | 98.4190 |
| 0.9803 | 0.7 | 14 | 0.8602 | 88.1423 |
| 0.4297 | 0.8 | 16 | 0.8011 | 71.9368 |
| 0.8011 | 0.9 | 18 | 0.7641 | 88.1423 |
| 0.7116 | 1.0 | 20 | 0.7268 | 71.1462 |
| 0.5078 | 1.1 | 22 | 0.6961 | 70.3557 |
| 0.3434 | 1.2 | 24 | 0.6913 | 102.7668 |
| 0.2949 | 1.3 | 26 | 0.6912 | 64.4269 |
| 0.3083 | 1.4 | 28 | 0.6876 | 70.3557 |
| 0.3996 | 1.5 | 30 | 0.6735 | 99.2095 |
| 0.4961 | 1.6 | 32 | 0.6827 | 100.0 |
| 0.3809 | 1.7 | 34 | 0.7010 | 100.0 |
| 0.3569 | 1.8 | 36 | 0.7126 | 100.0 |
| 0.2856 | 1.9 | 38 | 0.7077 | 100.0 |
| 0.7014 | 2.0 | 40 | 0.7168 | 100.0 |
| 0.0922 | 2.1 | 42 | 0.7038 | 100.0 |
| 0.2666 | 2.2 | 44 | 0.6838 | 100.0 |
| 0.1529 | 2.3 | 46 | 0.6524 | 97.2332 |
| 0.107 | 2.4 | 48 | 0.6326 | 95.6522 |
| 0.2065 | 2.5 | 50 | 0.6132 | 94.8617 |
| 0.1471 | 2.6 | 52 | 0.6077 | 87.7470 |
| 0.2814 | 2.7 | 54 | 0.6123 | 74.7036 |
| 0.1103 | 2.8 | 56 | 0.6161 | 66.0079 |
| 0.1729 | 2.9 | 58 | 0.6163 | 55.7312 |
| 0.0296 | 3.0 | 60 | 0.6138 | 49.8024 |
| 0.1011 | 3.1 | 62 | 0.6180 | 49.4071 |
| 0.1036 | 3.2 | 64 | 0.6289 | 53.3597 |
| 0.1189 | 3.3 | 66 | 0.6299 | 47.8261 |
| 0.0629 | 3.4 | 68 | 0.6301 | 49.8024 |
| 0.0678 | 3.5 | 70 | 0.6332 | 76.6798 |
| 0.0677 | 3.6 | 72 | 0.6340 | 73.9130 |
| 0.0486 | 3.7 | 74 | 0.6345 | 48.6166 |
| 0.082 | 3.8 | 76 | 0.6340 | 55.7312 |
| 0.0342 | 3.9 | 78 | 0.6369 | 55.3360 |
| 0.0443 | 4.0 | 80 | 0.6357 | 58.4980 |
| 0.0198 | 4.1 | 82 | 0.6331 | 52.9644 |
| 0.0407 | 4.2 | 84 | 0.6325 | 54.1502 |
| 0.0333 | 4.3 | 86 | 0.6360 | 58.1028 |
| 0.0144 | 4.4 | 88 | 0.6405 | 57.7075 |
| 0.0159 | 4.5 | 90 | 0.6443 | 56.9170 |
| 0.0315 | 4.6 | 92 | 0.6472 | 57.3123 |
| 0.0211 | 4.7 | 94 | 0.6489 | 56.5217 |
| 0.0311 | 4.8 | 96 | 0.6504 | 56.5217 |
| 0.0173 | 4.9 | 98 | 0.6500 | 56.1265 |
| 0.0074 | 5.0 | 100 | 0.6501 | 56.9170 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.15.2
|