File size: 4,546 Bytes
f3c3b34
6a4b6be
 
f3c3b34
 
 
 
 
 
 
6a4b6be
f3c3b34
 
 
 
 
 
6a4b6be
f3c3b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
language:
- pl
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large v3 - impaired polish speech v4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large v3 - impaired polish speech v4

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6501
- Wer: 56.9170

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.0749        | 0.1   | 2    | 2.6171          | 189.7233 |
| 1.9538        | 0.2   | 4    | 2.5450          | 189.7233 |
| 2.3076        | 0.3   | 6    | 2.2305          | 190.5138 |
| 1.7689        | 0.4   | 8    | 1.5214          | 100.0    |
| 1.1168        | 0.5   | 10   | 1.0848          | 100.0    |
| 1.5201        | 0.6   | 12   | 0.9314          | 98.4190  |
| 0.9803        | 0.7   | 14   | 0.8602          | 88.1423  |
| 0.4297        | 0.8   | 16   | 0.8011          | 71.9368  |
| 0.8011        | 0.9   | 18   | 0.7641          | 88.1423  |
| 0.7116        | 1.0   | 20   | 0.7268          | 71.1462  |
| 0.5078        | 1.1   | 22   | 0.6961          | 70.3557  |
| 0.3434        | 1.2   | 24   | 0.6913          | 102.7668 |
| 0.2949        | 1.3   | 26   | 0.6912          | 64.4269  |
| 0.3083        | 1.4   | 28   | 0.6876          | 70.3557  |
| 0.3996        | 1.5   | 30   | 0.6735          | 99.2095  |
| 0.4961        | 1.6   | 32   | 0.6827          | 100.0    |
| 0.3809        | 1.7   | 34   | 0.7010          | 100.0    |
| 0.3569        | 1.8   | 36   | 0.7126          | 100.0    |
| 0.2856        | 1.9   | 38   | 0.7077          | 100.0    |
| 0.7014        | 2.0   | 40   | 0.7168          | 100.0    |
| 0.0922        | 2.1   | 42   | 0.7038          | 100.0    |
| 0.2666        | 2.2   | 44   | 0.6838          | 100.0    |
| 0.1529        | 2.3   | 46   | 0.6524          | 97.2332  |
| 0.107         | 2.4   | 48   | 0.6326          | 95.6522  |
| 0.2065        | 2.5   | 50   | 0.6132          | 94.8617  |
| 0.1471        | 2.6   | 52   | 0.6077          | 87.7470  |
| 0.2814        | 2.7   | 54   | 0.6123          | 74.7036  |
| 0.1103        | 2.8   | 56   | 0.6161          | 66.0079  |
| 0.1729        | 2.9   | 58   | 0.6163          | 55.7312  |
| 0.0296        | 3.0   | 60   | 0.6138          | 49.8024  |
| 0.1011        | 3.1   | 62   | 0.6180          | 49.4071  |
| 0.1036        | 3.2   | 64   | 0.6289          | 53.3597  |
| 0.1189        | 3.3   | 66   | 0.6299          | 47.8261  |
| 0.0629        | 3.4   | 68   | 0.6301          | 49.8024  |
| 0.0678        | 3.5   | 70   | 0.6332          | 76.6798  |
| 0.0677        | 3.6   | 72   | 0.6340          | 73.9130  |
| 0.0486        | 3.7   | 74   | 0.6345          | 48.6166  |
| 0.082         | 3.8   | 76   | 0.6340          | 55.7312  |
| 0.0342        | 3.9   | 78   | 0.6369          | 55.3360  |
| 0.0443        | 4.0   | 80   | 0.6357          | 58.4980  |
| 0.0198        | 4.1   | 82   | 0.6331          | 52.9644  |
| 0.0407        | 4.2   | 84   | 0.6325          | 54.1502  |
| 0.0333        | 4.3   | 86   | 0.6360          | 58.1028  |
| 0.0144        | 4.4   | 88   | 0.6405          | 57.7075  |
| 0.0159        | 4.5   | 90   | 0.6443          | 56.9170  |
| 0.0315        | 4.6   | 92   | 0.6472          | 57.3123  |
| 0.0211        | 4.7   | 94   | 0.6489          | 56.5217  |
| 0.0311        | 4.8   | 96   | 0.6504          | 56.5217  |
| 0.0173        | 4.9   | 98   | 0.6500          | 56.1265  |
| 0.0074        | 5.0   | 100  | 0.6501          | 56.9170  |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.15.2