File size: 5,682 Bytes
4df3a14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# Gupshup
GupShup: Summarizing Open-Domain Code-Switched Conversations EMNLP 2021
Paper: [https://aclanthology.org/2021.emnlp-main.499.pdf](https://aclanthology.org/2021.emnlp-main.499.pdf)
Github: [https://github.com/midas-research/gupshup](https://github.com/midas-research/gupshup)
### Dataset
Please request for the Gupshup data using [this Google form](https://docs.google.com/forms/d/1zvUk7WcldVF3RCoHdWzQPzPprtSJClrnHoIOYbzaJEI/edit?ts=61381ec0).
Dataset is available for `Hinglish Dilaogues to English Summarization`(h2e) and `English Dialogues to English Summarization`(e2e). For each task, Dialogues/conversastion have `.source`(train.source) as file extension whereas Summary has `.target`(train.target) file extension. ".source" file need to be provided to `input_path` and ".target" file to `reference_path` argument in the scripts.
## Models
All model weights are available on the Huggingface model hub. Users can either directly download these weights in their local and provide this path to `model_name` argument in the scripts or use the provided alias (to `model_name` argument) in scripts directly; this will lead to download weights automatically by scripts.
Model names were aliased in "gupshup_TASK_MODEL" sense, where "TASK" can be h2e,e2e and MODEL can be mbart, pegasus, etc., as listed below.
**1. Hinglish Dialogues to English Summary (h2e)**
| Model | Huggingface Alias |
|---------|-------------------------------------------------------------------------------|
| mBART | [midas/gupshup_h2e_mbart](https://huggingface.co/midas/gupshup_h2e_mbart) |
| PEGASUS | [midas/gupshup_h2e_pegasus](https://huggingface.co/midas/gupshup_h2e_pegasus) |
| T5 MTL | [midas/gupshup_h2e_t5_mtl](https://huggingface.co/midas/gupshup_h2e_t5_mtl) |
| T5 | [midas/gupshup_h2e_t5](https://huggingface.co/midas/gupshup_h2e_t5) |
| BART | [midas/gupshup_h2e_bart](https://huggingface.co/midas/gupshup_h2e_bart) |
| GPT-2 | [midas/gupshup_h2e_gpt](https://huggingface.co/midas/gupshup_h2e_gpt) |
**2. English Dialogues to English Summary (e2e)**
| Model | Huggingface Alias |
|---------|-------------------------------------------------------------------------------|
| mBART | [midas/gupshup_e2e_mbart](https://huggingface.co/midas/gupshup_e2e_mbart) |
| PEGASUS | [midas/gupshup_e2e_pegasus](https://huggingface.co/midas/gupshup_e2e_pegasus) |
| T5 MTL | [midas/gupshup_e2e_t5_mtl](https://huggingface.co/midas/gupshup_e2e_t5_mtl) |
| T5 | [midas/gupshup_e2e_t5](https://huggingface.co/midas/gupshup_e2e_t5) |
| BART | [midas/gupshup_e2e_bart](https://huggingface.co/midas/gupshup_e2e_bart) |
| GPT-2 | [midas/gupshup_e2e_gpt](https://huggingface.co/midas/gupshup_e2e_gpt) |
## Inference
### Using command line
1. Clone this repo and create a python virtual environment (https://docs.python.org/3/library/venv.html). Install the required packages using
```
git clone https://github.com/midas-research/gupshup.git
pip install -r requirements.txt
```
2. run_eval script has the following arguments.
* **model_name** : Path or alias to one of our models available on Huggingface as listed above.
* **input_path** : Source file or path to file containing conversations, which will be summarized.
* **save_path** : File path where to save summaries generated by the model.
* **reference_path** : Target file or path to file containing summaries, used to calculate matrices.
* **score_path** : File path where to save scores.
* **bs** : Batch size
* **device**: Cuda devices to use.
Please make sure you have downloaded the Gupshup dataset using the above google form and provide the correct path to these files in the argument's `input_path` and `refrence_path.` Or you can simply put `test.source` and `test.target` in `data/h2e/`(hinglish to english) or `data/e2e/`(english to english) folder. For example, to generate English summaries from Hinglish dialogues using the mbart model, run the following command
```
python run_eval.py \
--model_name midas/gupshup_h2e_mbart \
--input_path data/h2e/test.source \
--save_path generated_summary.txt \
--reference_path data/h2e/test.target \
--score_path scores.txt \
--bs 8
```
Another example, to generate English summaries from English dialogues using the Pegasus model
```
python run_eval.py \
--model_name midas/gupshup_e2e_pegasus \
--input_path data/e2e/test.source \
--save_path generated_summary.txt \
--reference_path data/e2e/test.target \
--score_path scores.txt \
--bs 8
```
Please create an issue if you are facing any difficulties in replicating the results.
### References
Please cite [[1]](https://arxiv.org/abs/1910.04073) if you found the resources in this repository useful.
[1] Mehnaz, Laiba, Debanjan Mahata, Rakesh Gosangi, Uma Sushmitha Gunturi, Riya Jain, Gauri Gupta, Amardeep Kumar, Isabelle G. Lee, Anish Acharya, and Rajiv Shah. [*GupShup: Summarizing Open-Domain Code-Switched Conversations*](https://aclanthology.org/2021.emnlp-main.499.pdf)
```
@inproceedings{mehnaz2021gupshup,
title={GupShup: Summarizing Open-Domain Code-Switched Conversations},
author={Mehnaz, Laiba and Mahata, Debanjan and Gosangi, Rakesh and Gunturi, Uma Sushmitha and Jain, Riya and Gupta, Gauri and Kumar, Amardeep and Lee, Isabelle G and Acharya, Anish and Shah, Rajiv},
booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
pages={6177--6192},
year={2021}
}
```
|