Qian Liu commited on
Commit
c4bedc1
·
1 Parent(s): 40aa175

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
 
 
 
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - tapex
5
  license: mit
6
  ---
7
+
8
+ # TAPEX (large-sized model)
9
+
10
+ TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
11
+
12
+ ## Model description
13
+
14
+ TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.
15
+
16
+ TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.
17
+
18
+ This model is the `tapex-base` model fine-tuned on the [Tabfact](https://huggingface.co/datasets/tab_fact) dataset.
19
+
20
+ ## Intended Uses
21
+
22
+ You can use the model for table fact verficiation.
23
+
24
+ ### How to Use
25
+
26
+ Here is how to use this model in transformers:
27
+
28
+ ```python
29
+ from transformers import TapexTokenizer, BartForSequenceClassification
30
+ import pandas as pd
31
+
32
+ tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base-finetuned-tabfact")
33
+ model = BartForSequenceClassification.from_pretrained("microsoft/tapex-base-finetuned-tabfact")
34
+
35
+ data = {
36
+ "year": [1896, 1900, 1904, 2004, 2008, 2012],
37
+ "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
38
+ }
39
+ table = pd.DataFrame.from_dict(data)
40
+
41
+ # tapex accepts uncased input since it is pre-trained on the uncased corpus
42
+ query = "beijing hosts the olympic games in 2012"
43
+ encoding = tokenizer(table=table, query=query, return_tensors="pt")
44
+
45
+ outputs = model(**encoding)
46
+ output_id = int(outputs.logits[0].argmax(dim=0))
47
+ print(model.config.id2label[output_id])
48
+ # Refused
49
+ ```
50
+
51
+ ### How to Eval
52
+
53
+ Please find the eval script [here](https://github.com/SivilTaram/transformers/tree/add_tapex_bis/examples/research_projects/tapex).
54
+
55
+ ### BibTeX entry and citation info
56
+
57
+ ```bibtex
58
+ @inproceedings{
59
+ liu2022tapex,
60
+ title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
61
+ author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
62
+ booktitle={International Conference on Learning Representations},
63
+ year={2022},
64
+ url={https://openreview.net/forum?id=O50443AsCP}
65
+ }
66
+ ```