gugarosa commited on
Commit
6c4befe
·
verified ·
1 Parent(s): da135b7

Delete configuration_phi.py

Browse files
Files changed (1) hide show
  1. configuration_phi.py +0 -193
configuration_phi.py DELETED
@@ -1,193 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """ Phi model configuration"""
17
-
18
-
19
- from transformers.configuration_utils import PretrainedConfig
20
- from transformers.utils import logging
21
-
22
-
23
- logger = logging.get_logger(__name__)
24
-
25
- PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
- "microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json",
27
- }
28
-
29
-
30
- class PhiConfig(PretrainedConfig):
31
- r"""
32
- This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
33
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
- defaults will yield a similar configuration to that of the Phi
35
- [microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
36
-
37
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
- documentation from [`PretrainedConfig`] for more information.
39
-
40
- Args:
41
- vocab_size (`int`, *optional*, defaults to 51200):
42
- Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
43
- `inputs_ids` passed when calling [`PhiModel`].
44
- hidden_size (`int`, *optional*, defaults to 2048):
45
- Dimension of the hidden representations.
46
- intermediate_size (`int`, *optional*, defaults to 8192):
47
- Dimension of the MLP representations.
48
- num_hidden_layers (`int`, *optional*, defaults to 24):
49
- Number of hidden layers in the Transformer decoder.
50
- num_attention_heads (`int`, *optional*, defaults to 32):
51
- Number of attention heads for each attention layer in the Transformer decoder.
52
- num_key_value_heads (`int`, *optional*):
53
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
- by meanpooling all the original heads within that group. For more details checkout [this
58
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
- `num_attention_heads`.
60
- resid_pdrop (`float`, *optional*, defaults to 0.0):
61
- Dropout probability for mlp outputs.
62
- embd_pdrop (`int`, *optional*, defaults to 0.0):
63
- The dropout ratio for the embeddings.
64
- attention_dropout (`float`, *optional*, defaults to 0.0):
65
- The dropout ratio after computing the attention scores.
66
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
67
- The non-linear activation function (function or string) in the decoder.
68
- max_position_embeddings (`int`, *optional*, defaults to 2048):
69
- The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
70
- tokens.
71
- initializer_range (`float`, *optional*, defaults to 0.02):
72
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
73
- layer_norm_eps (`float`, *optional*, defaults to 1e-05):
74
- The epsilon used by the rms normalization layers.
75
- use_cache (`bool`, *optional*, defaults to `True`):
76
- Whether or not the model should return the last key/values attentions (not used by all models). Only
77
- relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
78
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
- Whether to tie weight embeddings
80
- rope_theta (`float`, *optional*, defaults to 10000.0):
81
- The base period of the RoPE embeddings.
82
- rope_scaling (`Dict`, *optional*):
83
- Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
84
- strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
85
- is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
86
- `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
87
- these scaling strategies behave:
88
- https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
89
- is an experimental feature, subject to breaking API changes in future versions.
90
- partial_rotary_factor (`float`, *optional*, defaults to 0.5):
91
- Percentage of the query and keys which will have rotary embedding.
92
- qk_layernorm (`bool`, *optional*, defaults to `False`):
93
- Whether or not to normalize the Queries and Keys after projecting the hidden states.
94
- bos_token_id (`int`, *optional*, defaults to 1):
95
- Denotes beginning of sequences token id.
96
- eos_token_id (`int`, *optional*, defaults to 2):
97
- Denotes end of sequences token id.
98
-
99
- Example:
100
-
101
- ```python
102
- >>> from transformers import PhiModel, PhiConfig
103
-
104
- >>> # Initializing a Phi-1 style configuration
105
- >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
106
-
107
- >>> # Initializing a model from the configuration
108
- >>> model = PhiModel(configuration)
109
-
110
- >>> # Accessing the model configuration
111
- >>> configuration = model.config
112
- ```"""
113
-
114
- model_type = "phi"
115
- keys_to_ignore_at_inference = ["past_key_values"]
116
-
117
- def __init__(
118
- self,
119
- vocab_size=51200,
120
- hidden_size=2048,
121
- intermediate_size=8192,
122
- num_hidden_layers=24,
123
- num_attention_heads=32,
124
- num_key_value_heads=None,
125
- resid_pdrop=0.0,
126
- embd_pdrop=0.0,
127
- attention_dropout=0.0,
128
- hidden_act="gelu_new",
129
- max_position_embeddings=2048,
130
- initializer_range=0.02,
131
- layer_norm_eps=1e-5,
132
- use_cache=True,
133
- tie_word_embeddings=False,
134
- rope_theta=10000.0,
135
- rope_scaling=None,
136
- partial_rotary_factor=0.5,
137
- qk_layernorm=False,
138
- bos_token_id=1,
139
- eos_token_id=2,
140
- **kwargs,
141
- ):
142
- self.vocab_size = vocab_size
143
- self.hidden_size = hidden_size
144
- self.intermediate_size = intermediate_size
145
- self.num_hidden_layers = num_hidden_layers
146
- self.num_attention_heads = num_attention_heads
147
-
148
- if num_key_value_heads is None:
149
- num_key_value_heads = num_attention_heads
150
-
151
- self.num_key_value_heads = num_key_value_heads
152
- self.resid_pdrop = resid_pdrop
153
- self.embd_pdrop = embd_pdrop
154
- self.attention_dropout = attention_dropout
155
- self.hidden_act = hidden_act
156
- self.max_position_embeddings = max_position_embeddings
157
- self.initializer_range = initializer_range
158
- self.layer_norm_eps = layer_norm_eps
159
- self.use_cache = use_cache
160
- self.rope_theta = rope_theta
161
- self.rope_scaling = rope_scaling
162
- self.partial_rotary_factor = partial_rotary_factor
163
- self.qk_layernorm = qk_layernorm
164
- self._rope_scaling_validation()
165
-
166
- super().__init__(
167
- bos_token_id=bos_token_id,
168
- eos_token_id=eos_token_id,
169
- tie_word_embeddings=tie_word_embeddings,
170
- **kwargs,
171
- )
172
-
173
- # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
174
- def _rope_scaling_validation(self):
175
- """
176
- Validate the `rope_scaling` configuration.
177
- """
178
- if self.rope_scaling is None:
179
- return
180
-
181
- if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
182
- raise ValueError(
183
- "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
184
- f"got {self.rope_scaling}"
185
- )
186
- rope_scaling_type = self.rope_scaling.get("type", None)
187
- rope_scaling_factor = self.rope_scaling.get("factor", None)
188
- if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
189
- raise ValueError(
190
- f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
191
- )
192
- if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
193
- raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")