Update README.md
Browse files
README.md
CHANGED
@@ -12,9 +12,9 @@ set a seed for reproducibility:
|
|
12 |
|
13 |
```python
|
14 |
>>> from transformers import pipeline, set_seed
|
15 |
-
>>> from transformers import BioGptTokenizer,
|
16 |
-
>>> model =
|
17 |
-
>>> tokenizer = BioGptTokenizer.from_pretrained("
|
18 |
>>> generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
19 |
>>> set_seed(42)
|
20 |
>>> generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True)
|
@@ -28,9 +28,9 @@ set a seed for reproducibility:
|
|
28 |
Here is how to use this model to get the features of a given text in PyTorch:
|
29 |
|
30 |
```python
|
31 |
-
from transformers import BioGptTokenizer,
|
32 |
-
tokenizer = BioGptTokenizer.from_pretrained("
|
33 |
-
model =
|
34 |
text = "Replace me by any text you'd like."
|
35 |
encoded_input = tokenizer(text, return_tensors='pt')
|
36 |
output = model(**encoded_input)
|
@@ -40,10 +40,10 @@ Beam-search decoding:
|
|
40 |
|
41 |
```python
|
42 |
import torch
|
43 |
-
from transformers import BioGptTokenizer,
|
44 |
|
45 |
-
tokenizer = BioGptTokenizer.from_pretrained("
|
46 |
-
model =
|
47 |
|
48 |
sentence = "COVID-19 is"
|
49 |
inputs = tokenizer(sentence, return_tensors="pt")
|
|
|
12 |
|
13 |
```python
|
14 |
>>> from transformers import pipeline, set_seed
|
15 |
+
>>> from transformers import BioGptTokenizer, BioGptForCausalLM
|
16 |
+
>>> model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
17 |
+
>>> tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
18 |
>>> generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
19 |
>>> set_seed(42)
|
20 |
>>> generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True)
|
|
|
28 |
Here is how to use this model to get the features of a given text in PyTorch:
|
29 |
|
30 |
```python
|
31 |
+
from transformers import BioGptTokenizer, BioGptForCausalLM
|
32 |
+
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
33 |
+
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
34 |
text = "Replace me by any text you'd like."
|
35 |
encoded_input = tokenizer(text, return_tensors='pt')
|
36 |
output = model(**encoded_input)
|
|
|
40 |
|
41 |
```python
|
42 |
import torch
|
43 |
+
from transformers import BioGptTokenizer, BioGptForCausalLM, set_seed
|
44 |
|
45 |
+
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
46 |
+
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
47 |
|
48 |
sentence = "COVID-19 is"
|
49 |
inputs = tokenizer(sentence, return_tensors="pt")
|