kvaishnavi
commited on
Commit
·
aaafbba
1
Parent(s):
c153c49
Upload Phi-3-medium-128k-instruct ONNX models
Browse files- LICENSE +223 -0
- README.md +98 -0
- config.json +169 -0
- configuration_phi3.py +213 -0
- directml-int4-awq-block-128/added_tokens.json +13 -0
- directml-int4-awq-block-128/config.json +169 -0
- directml-int4-awq-block-128/configuration_phi3.py +213 -0
- directml-int4-awq-block-128/genai_config.json +58 -0
- directml-int4-awq-block-128/model.onnx +3 -0
- directml-int4-awq-block-128/model.onnx.data +3 -0
- directml-int4-awq-block-128/special_tokens_map.json +30 -0
- directml-int4-awq-block-128/tokenizer.json +0 -0
- directml-int4-awq-block-128/tokenizer.model +3 -0
- directml-int4-awq-block-128/tokenizer_config.json +130 -0
LICENSE
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) Microsoft Corporation.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE
|
22 |
+
|
23 |
+
Apache License
|
24 |
+
Version 2.0, January 2004
|
25 |
+
http://www.apache.org/licenses/
|
26 |
+
|
27 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
28 |
+
|
29 |
+
1. Definitions.
|
30 |
+
|
31 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
32 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
33 |
+
|
34 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
35 |
+
the copyright owner that is granting the License.
|
36 |
+
|
37 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
38 |
+
other entities that control, are controlled by, or are under common
|
39 |
+
control with that entity. For the purposes of this definition,
|
40 |
+
"control" means (i) the power, direct or indirect, to cause the
|
41 |
+
direction or management of such entity, whether by contract or
|
42 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
43 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
44 |
+
|
45 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
46 |
+
exercising permissions granted by this License.
|
47 |
+
|
48 |
+
"Source" form shall mean the preferred form for making modifications,
|
49 |
+
including but not limited to software source code, documentation
|
50 |
+
source, and configuration files.
|
51 |
+
|
52 |
+
"Object" form shall mean any form resulting from mechanical
|
53 |
+
transformation or translation of a Source form, including but
|
54 |
+
not limited to compiled object code, generated documentation,
|
55 |
+
and conversions to other media types.
|
56 |
+
|
57 |
+
"Work" shall mean the work of authorship, whether in Source or
|
58 |
+
Object form, made available under the License, as indicated by a
|
59 |
+
copyright notice that is included in or attached to the work
|
60 |
+
(an example is provided in the Appendix below).
|
61 |
+
|
62 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
63 |
+
form, that is based on (or derived from) the Work and for which the
|
64 |
+
editorial revisions, annotations, elaborations, or other modifications
|
65 |
+
represent, as a whole, an original work of authorship. For the purposes
|
66 |
+
of this License, Derivative Works shall not include works that remain
|
67 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
68 |
+
the Work and Derivative Works thereof.
|
69 |
+
|
70 |
+
"Contribution" shall mean any work of authorship, including
|
71 |
+
the original version of the Work and any modifications or additions
|
72 |
+
to that Work or Derivative Works thereof, that is intentionally
|
73 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
74 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
75 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
76 |
+
means any form of electronic, verbal, or written communication sent
|
77 |
+
to the Licensor or its representatives, including but not limited to
|
78 |
+
communication on electronic mailing lists, source code control systems,
|
79 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
80 |
+
Licensor for the purpose of discussing and improving the Work, but
|
81 |
+
excluding communication that is conspicuously marked or otherwise
|
82 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
83 |
+
|
84 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
85 |
+
on behalf of whom a Contribution has been received by Licensor and
|
86 |
+
subsequently incorporated within the Work.
|
87 |
+
|
88 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
89 |
+
this License, each Contributor hereby grants to You a perpetual,
|
90 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
91 |
+
copyright license to reproduce, prepare Derivative Works of,
|
92 |
+
publicly display, publicly perform, sublicense, and distribute the
|
93 |
+
Work and such Derivative Works in Source or Object form.
|
94 |
+
|
95 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
96 |
+
this License, each Contributor hereby grants to You a perpetual,
|
97 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
98 |
+
(except as stated in this section) patent license to make, have made,
|
99 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
100 |
+
where such license applies only to those patent claims licensable
|
101 |
+
by such Contributor that are necessarily infringed by their
|
102 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
103 |
+
with the Work to which such Contribution(s) was submitted. If You
|
104 |
+
institute patent litigation against any entity (including a
|
105 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
106 |
+
or a Contribution incorporated within the Work constitutes direct
|
107 |
+
or contributory patent infringement, then any patent licenses
|
108 |
+
granted to You under this License for that Work shall terminate
|
109 |
+
as of the date such litigation is filed.
|
110 |
+
|
111 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
112 |
+
Work or Derivative Works thereof in any medium, with or without
|
113 |
+
modifications, and in Source or Object form, provided that You
|
114 |
+
meet the following conditions:
|
115 |
+
|
116 |
+
(a) You must give any other recipients of the Work or
|
117 |
+
Derivative Works a copy of this License; and
|
118 |
+
|
119 |
+
(b) You must cause any modified files to carry prominent notices
|
120 |
+
stating that You changed the files; and
|
121 |
+
|
122 |
+
(c) You must retain, in the Source form of any Derivative Works
|
123 |
+
that You distribute, all copyright, patent, trademark, and
|
124 |
+
attribution notices from the Source form of the Work,
|
125 |
+
excluding those notices that do not pertain to any part of
|
126 |
+
the Derivative Works; and
|
127 |
+
|
128 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
129 |
+
distribution, then any Derivative Works that You distribute must
|
130 |
+
include a readable copy of the attribution notices contained
|
131 |
+
within such NOTICE file, excluding those notices that do not
|
132 |
+
pertain to any part of the Derivative Works, in at least one
|
133 |
+
of the following places: within a NOTICE text file distributed
|
134 |
+
as part of the Derivative Works; within the Source form or
|
135 |
+
documentation, if provided along with the Derivative Works; or,
|
136 |
+
within a display generated by the Derivative Works, if and
|
137 |
+
wherever such third-party notices normally appear. The contents
|
138 |
+
of the NOTICE file are for informational purposes only and
|
139 |
+
do not modify the License. You may add Your own attribution
|
140 |
+
notices within Derivative Works that You distribute, alongside
|
141 |
+
or as an addendum to the NOTICE text from the Work, provided
|
142 |
+
that such additional attribution notices cannot be construed
|
143 |
+
as modifying the License.
|
144 |
+
|
145 |
+
You may add Your own copyright statement to Your modifications and
|
146 |
+
may provide additional or different license terms and conditions
|
147 |
+
for use, reproduction, or distribution of Your modifications, or
|
148 |
+
for any such Derivative Works as a whole, provided Your use,
|
149 |
+
reproduction, and distribution of the Work otherwise complies with
|
150 |
+
the conditions stated in this License.
|
151 |
+
|
152 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
153 |
+
any Contribution intentionally submitted for inclusion in the Work
|
154 |
+
by You to the Licensor shall be under the terms and conditions of
|
155 |
+
this License, without any additional terms or conditions.
|
156 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
157 |
+
the terms of any separate license agreement you may have executed
|
158 |
+
with Licensor regarding such Contributions.
|
159 |
+
|
160 |
+
6. Trademarks. This License does not grant permission to use the trade
|
161 |
+
names, trademarks, service marks, or product names of the Licensor,
|
162 |
+
except as required for reasonable and customary use in describing the
|
163 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
164 |
+
|
165 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
166 |
+
agreed to in writing, Licensor provides the Work (and each
|
167 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
168 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
169 |
+
implied, including, without limitation, any warranties or conditions
|
170 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
171 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
172 |
+
appropriateness of using or redistributing the Work and assume any
|
173 |
+
risks associated with Your exercise of permissions under this License.
|
174 |
+
|
175 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
176 |
+
whether in tort (including negligence), contract, or otherwise,
|
177 |
+
unless required by applicable law (such as deliberate and grossly
|
178 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
179 |
+
liable to You for damages, including any direct, indirect, special,
|
180 |
+
incidental, or consequential damages of any character arising as a
|
181 |
+
result of this License or out of the use or inability to use the
|
182 |
+
Work (including but not limited to damages for loss of goodwill,
|
183 |
+
work stoppage, computer failure or malfunction, or any and all
|
184 |
+
other commercial damages or losses), even if such Contributor
|
185 |
+
has been advised of the possibility of such damages.
|
186 |
+
|
187 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
188 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
189 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
190 |
+
or other liability obligations and/or rights consistent with this
|
191 |
+
License. However, in accepting such obligations, You may act only
|
192 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
193 |
+
of any other Contributor, and only if You agree to indemnify,
|
194 |
+
defend, and hold each Contributor harmless for any liability
|
195 |
+
incurred by, or claims asserted against, such Contributor by reason
|
196 |
+
of your accepting any such warranty or additional liability.
|
197 |
+
|
198 |
+
END OF TERMS AND CONDITIONS
|
199 |
+
|
200 |
+
============================================================================
|
201 |
+
|
202 |
+
Copyright 2016-2019 Intel Corporation
|
203 |
+
Copyright 2018 YANDEX LLC
|
204 |
+
|
205 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
206 |
+
you may not use this file except in compliance with the License.
|
207 |
+
You may obtain a copy of the License at
|
208 |
+
|
209 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
210 |
+
|
211 |
+
Unless required by applicable law or agreed to in writing, software
|
212 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
213 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
214 |
+
See the License for the specific language governing permissions and
|
215 |
+
limitations under the License.
|
216 |
+
|
217 |
+
This distribution includes third party software ("third party programs").
|
218 |
+
This third party software, even if included with the distribution of
|
219 |
+
the Intel software, may be governed by separate license terms, including
|
220 |
+
without limitation, third party license terms, other Intel software license
|
221 |
+
terms, and open source software license terms. These separate license terms
|
222 |
+
govern your use of the third party programs as set forth in the
|
223 |
+
"THIRD-PARTY-PROGRAMS" file.
|
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
tags:
|
5 |
+
- ONNX
|
6 |
+
- DML
|
7 |
+
- ONNXRuntime
|
8 |
+
- phi3
|
9 |
+
- nlp
|
10 |
+
- conversational
|
11 |
+
- custom_code
|
12 |
+
inference: false
|
13 |
+
---
|
14 |
+
|
15 |
+
# Phi-3 Medium-128K-Instruct ONNX DirectML models
|
16 |
+
|
17 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
18 |
+
This repository hosts the optimized versions of [Phi-3-medium-128k-instruct](https://aka.ms/phi3-medium-128K-instruct) to accelerate inference with DirectML and ONNX Runtime for your machines with GPUs.
|
19 |
+
|
20 |
+
Phi-3 Medium is a 14B parameter, lightweight, state-of-the-art open model trained with the Phi-3 datasets, which include both synthetic data and the filtered publicly available websites data, with a focus on high-quality and reasoning dense properties. The model belongs to the Phi-3 family with the medium version in two variants: [4K](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) and [128K](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct), which are the context lengths (in tokens) that they can support.
|
21 |
+
|
22 |
+
The model has underwent a post-training process that incorporates both supervised fine-tuning and direct preference optimization for the instruction following and safety measures. When assessed against benchmarks testing common sense, language understanding, math, code, long context, and logical reasoning, Phi-3-Medium-128K-Instruct showcased a robust and state-of-the-art performance among models of the same-size and next-size-up.
|
23 |
+
|
24 |
+
Optimized variants of the Phi-3 Medium models are published here in [ONNX](https://onnx.ai) format and run with [DirectML](https://learn.microsoft.com/en-us/windows/ai/directml/dml-intro). This lets developers bring hardware acceleration to Windows devices at scale across AMD, Intel, and NVIDIA GPUs.
|
25 |
+
|
26 |
+
## ONNX Models
|
27 |
+
|
28 |
+
Here are some of the optimized configurations we have added:
|
29 |
+
|
30 |
+
1. ONNX model for INT4 DML: ONNX model optimized to run with DirectML and quantized to int4 precision using AWQ*.
|
31 |
+
|
32 |
+
How do you know which is the best ONNX model for you:
|
33 |
+
- Are you on a Windows machine with GPU?
|
34 |
+
- I don't know → Review this [guide](https://www.microsoft.com/en-us/windows/learning-center/how-to-check-gpu) to see whether you have a GPU in your Windows machine.
|
35 |
+
- Yes → Access the Hugging Face DirectML ONNX models and instructions at [Phi-3-medium-128k-instruct-onnx-directml](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-directml).
|
36 |
+
- No → Do you have a NVIDIA GPU?
|
37 |
+
- I don't know → Review this [guide](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#verify-you-have-a-cuda-capable-gpu) to see whether you have a CUDA-capable GPU.
|
38 |
+
- Yes → Access the Hugging Face CUDA ONNX models and instructions at [Phi-3-medium-128k-instruct-onnx-cuda](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-cuda) for NVIDIA GPUs.
|
39 |
+
- No → Access the Hugging Face ONNX models for CPU devices and instructions at [Phi-3-medium-128k-instruct-onnx-cpu](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-cpu)
|
40 |
+
|
41 |
+
## How to Get Started with the Model
|
42 |
+
To support the Phi-3 models across a range of devices, platforms, and EP backends, we introduce a new API to wrap several aspects of generative AI inferencing. This API makes it easy to drag and drop LLMs straight into your app. To run the early version of these models with ONNX, follow the steps [here](http://aka.ms/generate-tutorial). You can also test this with a [chat app](https://github.com/microsoft/onnxruntime-genai/tree/main/examples/chat_app).
|
43 |
+
|
44 |
+
## Hardware Supported
|
45 |
+
|
46 |
+
The model has been tested on:
|
47 |
+
- GPU SKU: RTX 4090 (DirectML)
|
48 |
+
|
49 |
+
Minimum Configuration Required:
|
50 |
+
- Windows: DirectX 12-capable GPU and a minimum of 10GB of combined RAM
|
51 |
+
|
52 |
+
### Model Description
|
53 |
+
|
54 |
+
- **Developed by:** Microsoft
|
55 |
+
- **Model type:** ONNX
|
56 |
+
- **Language(s) (NLP):** Python, C, C++
|
57 |
+
- **License:** MIT
|
58 |
+
- **Model Description:** This is a conversion of the Phi-3 Medium-128K-Instruct model for ONNX Runtime inference.
|
59 |
+
|
60 |
+
## Additional Details
|
61 |
+
- [**Phi-3 Small, Medium, and Vision Blog**](https://aka.ms/phi3_ONNXBuild24) and [**Phi-3 Mini Blog**](https://aka.ms/phi3-optimizations)
|
62 |
+
- [**Phi-3 Model Blog Link**](https://aka.ms/phi3blog-april)
|
63 |
+
- [**Phi-3 Model Card**]( https://aka.ms/phi3-medium-128K-instruct)
|
64 |
+
- [**Phi-3 Technical Report**](https://aka.ms/phi3-tech-report)
|
65 |
+
- [**Phi-3 on Azure AI Studio**](https://aka.ms/phi3-azure-ai)
|
66 |
+
|
67 |
+
## Performance Metrics
|
68 |
+
|
69 |
+
## DirectML
|
70 |
+
We measured the performance of DirectML and ONNX Runtime's new Generate() API with Phi-3 medium quantized with Activation-Aware Quantization [AWQ](https://arxiv.org/abs/2306.00978) and with a block size of 128 on Windows. Our test machine had an NVIDIA GeForce RTX 4090 GPU and an Intel Core i9-13900K CPU. DirectML lets developers not only achieve great performance but also lets developers deploy models across the entire Windows ecosystem with support from AMD, Intel, and NVIDIA. Best of all, AWQ means that developers get this scale while also maintaining high model accuracy.
|
71 |
+
|
72 |
+
Stay tuned for additional performance improvements in the coming weeks thanks to optimized drivers from our hardware partners, along with additional updates to the ONNX Runtime Generate() API.
|
73 |
+
|
74 |
+
| Batch Size, Prompt Length | Block Size = 32 | Block Size = 128 |
|
75 |
+
|---------------------------|-----------------|------------------|
|
76 |
+
| 1, 16 | 66.60 | 72.26 |
|
77 |
+
|
78 |
+
|
79 |
+
#### Package Versions
|
80 |
+
|
81 |
+
| Pip package name | Version |
|
82 |
+
|------------------|---------|
|
83 |
+
| torch | 2.2.0 |
|
84 |
+
| triton | 2.2.0 |
|
85 |
+
| onnxruntime-gpu | 1.18.0 |
|
86 |
+
| transformers | 4.39.0 |
|
87 |
+
| bitsandbytes | 0.42.0 |
|
88 |
+
|
89 |
+
## Appendix
|
90 |
+
|
91 |
+
### Activation Aware Quantization
|
92 |
+
AWQ works by identifying the top 1% most salient weights that are most important for maintaining accuracy and quantizing the remaining 99% of weights. This leads to less accuracy loss from quantization compared to many other quantization techniques. For more on AWQ see [here](https://arxiv.org/abs/2306.00978).
|
93 |
+
|
94 |
+
## Model Card Contact
|
95 |
+
parinitarahi, kvaishnavi, natke
|
96 |
+
|
97 |
+
## Contributors
|
98 |
+
Kunal Vaishnavi, Sunghoon Choi, Yufeng Li, Sheetal Arun Kadam, Natalie Kershaw, Parinita Rahi, Patrice Vignola, Xiang Zhang, Chai Chaoweeraprasit, Logan Iyer, Vicente Rivera, Jacques van Rhyn
|
config.json
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Phi-3-medium-128k-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
9 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"embd_pdrop": 0.0,
|
13 |
+
"eos_token_id": 32000,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 5120,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 17920,
|
18 |
+
"max_position_embeddings": 131072,
|
19 |
+
"model_type": "phi3",
|
20 |
+
"num_attention_heads": 40,
|
21 |
+
"num_hidden_layers": 40,
|
22 |
+
"num_key_value_heads": 10,
|
23 |
+
"original_max_position_embeddings": 4096,
|
24 |
+
"pad_token_id": null,
|
25 |
+
"resid_pdrop": 0.0,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_scaling": {
|
28 |
+
"long_factor": [
|
29 |
+
1.0,
|
30 |
+
1.0,
|
31 |
+
1.0,
|
32 |
+
1.0,
|
33 |
+
1.0,
|
34 |
+
1.0,
|
35 |
+
1.0,
|
36 |
+
1.0,
|
37 |
+
1.0,
|
38 |
+
1.0,
|
39 |
+
1.0,
|
40 |
+
1.0,
|
41 |
+
1.0,
|
42 |
+
1.25,
|
43 |
+
1.25,
|
44 |
+
1.5,
|
45 |
+
2.0,
|
46 |
+
2.75,
|
47 |
+
5.75,
|
48 |
+
5.75,
|
49 |
+
6.5,
|
50 |
+
9.25,
|
51 |
+
11.0,
|
52 |
+
13.25,
|
53 |
+
19.25,
|
54 |
+
19.75,
|
55 |
+
19.75,
|
56 |
+
21.25,
|
57 |
+
21.5,
|
58 |
+
26.5,
|
59 |
+
30.0,
|
60 |
+
33.75,
|
61 |
+
35.25,
|
62 |
+
38.5,
|
63 |
+
42.0,
|
64 |
+
42.25,
|
65 |
+
46.0,
|
66 |
+
47.0,
|
67 |
+
50.0,
|
68 |
+
50.5,
|
69 |
+
51.0,
|
70 |
+
52.0,
|
71 |
+
52.75,
|
72 |
+
53.75,
|
73 |
+
54.75,
|
74 |
+
57.0,
|
75 |
+
57.25,
|
76 |
+
58.5,
|
77 |
+
59.25,
|
78 |
+
59.5,
|
79 |
+
62.0,
|
80 |
+
62.5,
|
81 |
+
62.75,
|
82 |
+
63.25,
|
83 |
+
63.25,
|
84 |
+
63.25,
|
85 |
+
63.75,
|
86 |
+
64.0,
|
87 |
+
64.0,
|
88 |
+
64.25,
|
89 |
+
64.5,
|
90 |
+
64.5,
|
91 |
+
65.0,
|
92 |
+
65.0
|
93 |
+
],
|
94 |
+
"short_factor": [
|
95 |
+
1.0,
|
96 |
+
1.0,
|
97 |
+
1.0,
|
98 |
+
1.0,
|
99 |
+
1.0,
|
100 |
+
1.0,
|
101 |
+
1.01,
|
102 |
+
1.02,
|
103 |
+
1.02,
|
104 |
+
1.04,
|
105 |
+
1.04,
|
106 |
+
1.07,
|
107 |
+
1.07,
|
108 |
+
1.1,
|
109 |
+
1.3000000000000003,
|
110 |
+
1.3000000000000003,
|
111 |
+
1.5000000000000004,
|
112 |
+
1.5700000000000005,
|
113 |
+
1.9000000000000008,
|
114 |
+
2.3100000000000014,
|
115 |
+
2.759999999999992,
|
116 |
+
3.3899999999999784,
|
117 |
+
3.9399999999999666,
|
118 |
+
4.009999999999965,
|
119 |
+
4.289999999999959,
|
120 |
+
4.349999999999958,
|
121 |
+
5.349999999999937,
|
122 |
+
6.659999999999909,
|
123 |
+
7.029999999999901,
|
124 |
+
7.51999999999989,
|
125 |
+
8.00999999999988,
|
126 |
+
8.249999999999876,
|
127 |
+
8.279999999999875,
|
128 |
+
9.629999999999846,
|
129 |
+
9.89999999999984,
|
130 |
+
10.589999999999826,
|
131 |
+
11.049999999999816,
|
132 |
+
11.7899999999998,
|
133 |
+
12.189999999999792,
|
134 |
+
12.889999999999777,
|
135 |
+
13.129999999999772,
|
136 |
+
13.16999999999977,
|
137 |
+
13.20999999999977,
|
138 |
+
13.479999999999764,
|
139 |
+
13.539999999999763,
|
140 |
+
13.779999999999758,
|
141 |
+
13.929999999999755,
|
142 |
+
14.429999999999744,
|
143 |
+
14.759999999999737,
|
144 |
+
15.149999999999729,
|
145 |
+
15.419999999999723,
|
146 |
+
15.53999999999972,
|
147 |
+
15.659999999999718,
|
148 |
+
15.749999999999716,
|
149 |
+
15.759999999999716,
|
150 |
+
15.799999999999715,
|
151 |
+
16.05999999999971,
|
152 |
+
16.079999999999714,
|
153 |
+
16.11999999999972,
|
154 |
+
16.11999999999972,
|
155 |
+
16.18999999999973,
|
156 |
+
16.31999999999975,
|
157 |
+
16.539999999999786,
|
158 |
+
16.799999999999827
|
159 |
+
],
|
160 |
+
"type": "su"
|
161 |
+
},
|
162 |
+
"rope_theta": 10000.0,
|
163 |
+
"sliding_window": 131072,
|
164 |
+
"tie_word_embeddings": false,
|
165 |
+
"torch_dtype": "bfloat16",
|
166 |
+
"transformers_version": "4.39.3",
|
167 |
+
"use_cache": true,
|
168 |
+
"vocab_size": 32064
|
169 |
+
}
|
configuration_phi3.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3 model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
+
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class Phi3Config(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the
|
36 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
+
Dropout probability for mlp outputs.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio after computing the attention scores.
|
67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
+
The non-linear activation function (function or string) in the decoder.
|
69 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model might ever be used with.
|
71 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
+
original RoPE embeddings when using long scaling.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
+
The epsilon value used for the RMSNorm.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`dict`, *optional*):
|
86 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
88 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
+
divided by the number of attention heads divided by 2.
|
90 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
+
The id of the "beginning-of-sequence" token.
|
92 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the "end-of-sequence" token.
|
94 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
+
The id of the padding token.
|
96 |
+
sliding_window (`int`, *optional*):
|
97 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import Phi3Model, Phi3Config
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-3 style configuration
|
105 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = Phi3Model(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi3"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32064,
|
120 |
+
hidden_size=3072,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="silu",
|
129 |
+
max_position_embeddings=4096,
|
130 |
+
original_max_position_embeddings=4096,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-5,
|
133 |
+
use_cache=True,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
bos_token_id=1,
|
138 |
+
eos_token_id=32000,
|
139 |
+
pad_token_id=32000,
|
140 |
+
sliding_window=None,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
+
|
149 |
+
if num_key_value_heads is None:
|
150 |
+
num_key_value_heads = num_attention_heads
|
151 |
+
|
152 |
+
self.num_key_value_heads = num_key_value_heads
|
153 |
+
self.resid_pdrop = resid_pdrop
|
154 |
+
self.embd_pdrop = embd_pdrop
|
155 |
+
self.attention_dropout = attention_dropout
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
+
self.initializer_range = initializer_range
|
160 |
+
self.rms_norm_eps = rms_norm_eps
|
161 |
+
self.use_cache = use_cache
|
162 |
+
self.rope_theta = rope_theta
|
163 |
+
self.rope_scaling = rope_scaling
|
164 |
+
self._rope_scaling_validation()
|
165 |
+
self.sliding_window = sliding_window
|
166 |
+
|
167 |
+
super().__init__(
|
168 |
+
bos_token_id=bos_token_id,
|
169 |
+
eos_token_id=eos_token_id,
|
170 |
+
pad_token_id=pad_token_id,
|
171 |
+
tie_word_embeddings=tie_word_embeddings,
|
172 |
+
**kwargs,
|
173 |
+
)
|
174 |
+
|
175 |
+
def _rope_scaling_validation(self):
|
176 |
+
"""
|
177 |
+
Validate the `rope_scaling` configuration.
|
178 |
+
"""
|
179 |
+
if self.rope_scaling is None:
|
180 |
+
return
|
181 |
+
|
182 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
183 |
+
raise ValueError(
|
184 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
185 |
+
f"got {self.rope_scaling}"
|
186 |
+
)
|
187 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
188 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
189 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
190 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
191 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
192 |
+
if not (
|
193 |
+
isinstance(rope_scaling_short_factor, list)
|
194 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
195 |
+
):
|
196 |
+
raise ValueError(
|
197 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
198 |
+
)
|
199 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
200 |
+
raise ValueError(
|
201 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
202 |
+
)
|
203 |
+
if not (
|
204 |
+
isinstance(rope_scaling_long_factor, list)
|
205 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
206 |
+
):
|
207 |
+
raise ValueError(
|
208 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
209 |
+
)
|
210 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
211 |
+
raise ValueError(
|
212 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
213 |
+
)
|
directml-int4-awq-block-128/added_tokens.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|assistant|>": 32001,
|
3 |
+
"<|endoftext|>": 32000,
|
4 |
+
"<|end|>": 32007,
|
5 |
+
"<|placeholder1|>": 32002,
|
6 |
+
"<|placeholder2|>": 32003,
|
7 |
+
"<|placeholder3|>": 32004,
|
8 |
+
"<|placeholder4|>": 32005,
|
9 |
+
"<|placeholder5|>": 32008,
|
10 |
+
"<|placeholder6|>": 32009,
|
11 |
+
"<|system|>": 32006,
|
12 |
+
"<|user|>": 32010
|
13 |
+
}
|
directml-int4-awq-block-128/config.json
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Phi-3-medium-128k-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
9 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"embd_pdrop": 0.0,
|
13 |
+
"eos_token_id": 32000,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 5120,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 17920,
|
18 |
+
"max_position_embeddings": 131072,
|
19 |
+
"model_type": "phi3",
|
20 |
+
"num_attention_heads": 40,
|
21 |
+
"num_hidden_layers": 40,
|
22 |
+
"num_key_value_heads": 10,
|
23 |
+
"original_max_position_embeddings": 4096,
|
24 |
+
"pad_token_id": null,
|
25 |
+
"resid_pdrop": 0.0,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_scaling": {
|
28 |
+
"long_factor": [
|
29 |
+
1.0,
|
30 |
+
1.0,
|
31 |
+
1.0,
|
32 |
+
1.0,
|
33 |
+
1.0,
|
34 |
+
1.0,
|
35 |
+
1.0,
|
36 |
+
1.0,
|
37 |
+
1.0,
|
38 |
+
1.0,
|
39 |
+
1.0,
|
40 |
+
1.0,
|
41 |
+
1.0,
|
42 |
+
1.25,
|
43 |
+
1.25,
|
44 |
+
1.5,
|
45 |
+
2.0,
|
46 |
+
2.75,
|
47 |
+
5.75,
|
48 |
+
5.75,
|
49 |
+
6.5,
|
50 |
+
9.25,
|
51 |
+
11.0,
|
52 |
+
13.25,
|
53 |
+
19.25,
|
54 |
+
19.75,
|
55 |
+
19.75,
|
56 |
+
21.25,
|
57 |
+
21.5,
|
58 |
+
26.5,
|
59 |
+
30.0,
|
60 |
+
33.75,
|
61 |
+
35.25,
|
62 |
+
38.5,
|
63 |
+
42.0,
|
64 |
+
42.25,
|
65 |
+
46.0,
|
66 |
+
47.0,
|
67 |
+
50.0,
|
68 |
+
50.5,
|
69 |
+
51.0,
|
70 |
+
52.0,
|
71 |
+
52.75,
|
72 |
+
53.75,
|
73 |
+
54.75,
|
74 |
+
57.0,
|
75 |
+
57.25,
|
76 |
+
58.5,
|
77 |
+
59.25,
|
78 |
+
59.5,
|
79 |
+
62.0,
|
80 |
+
62.5,
|
81 |
+
62.75,
|
82 |
+
63.25,
|
83 |
+
63.25,
|
84 |
+
63.25,
|
85 |
+
63.75,
|
86 |
+
64.0,
|
87 |
+
64.0,
|
88 |
+
64.25,
|
89 |
+
64.5,
|
90 |
+
64.5,
|
91 |
+
65.0,
|
92 |
+
65.0
|
93 |
+
],
|
94 |
+
"short_factor": [
|
95 |
+
1.0,
|
96 |
+
1.0,
|
97 |
+
1.0,
|
98 |
+
1.0,
|
99 |
+
1.0,
|
100 |
+
1.0,
|
101 |
+
1.01,
|
102 |
+
1.02,
|
103 |
+
1.02,
|
104 |
+
1.04,
|
105 |
+
1.04,
|
106 |
+
1.07,
|
107 |
+
1.07,
|
108 |
+
1.1,
|
109 |
+
1.3000000000000003,
|
110 |
+
1.3000000000000003,
|
111 |
+
1.5000000000000004,
|
112 |
+
1.5700000000000005,
|
113 |
+
1.9000000000000008,
|
114 |
+
2.3100000000000014,
|
115 |
+
2.759999999999992,
|
116 |
+
3.3899999999999784,
|
117 |
+
3.9399999999999666,
|
118 |
+
4.009999999999965,
|
119 |
+
4.289999999999959,
|
120 |
+
4.349999999999958,
|
121 |
+
5.349999999999937,
|
122 |
+
6.659999999999909,
|
123 |
+
7.029999999999901,
|
124 |
+
7.51999999999989,
|
125 |
+
8.00999999999988,
|
126 |
+
8.249999999999876,
|
127 |
+
8.279999999999875,
|
128 |
+
9.629999999999846,
|
129 |
+
9.89999999999984,
|
130 |
+
10.589999999999826,
|
131 |
+
11.049999999999816,
|
132 |
+
11.7899999999998,
|
133 |
+
12.189999999999792,
|
134 |
+
12.889999999999777,
|
135 |
+
13.129999999999772,
|
136 |
+
13.16999999999977,
|
137 |
+
13.20999999999977,
|
138 |
+
13.479999999999764,
|
139 |
+
13.539999999999763,
|
140 |
+
13.779999999999758,
|
141 |
+
13.929999999999755,
|
142 |
+
14.429999999999744,
|
143 |
+
14.759999999999737,
|
144 |
+
15.149999999999729,
|
145 |
+
15.419999999999723,
|
146 |
+
15.53999999999972,
|
147 |
+
15.659999999999718,
|
148 |
+
15.749999999999716,
|
149 |
+
15.759999999999716,
|
150 |
+
15.799999999999715,
|
151 |
+
16.05999999999971,
|
152 |
+
16.079999999999714,
|
153 |
+
16.11999999999972,
|
154 |
+
16.11999999999972,
|
155 |
+
16.18999999999973,
|
156 |
+
16.31999999999975,
|
157 |
+
16.539999999999786,
|
158 |
+
16.799999999999827
|
159 |
+
],
|
160 |
+
"type": "su"
|
161 |
+
},
|
162 |
+
"rope_theta": 10000.0,
|
163 |
+
"sliding_window": 131072,
|
164 |
+
"tie_word_embeddings": false,
|
165 |
+
"torch_dtype": "bfloat16",
|
166 |
+
"transformers_version": "4.39.3",
|
167 |
+
"use_cache": true,
|
168 |
+
"vocab_size": 32064
|
169 |
+
}
|
directml-int4-awq-block-128/configuration_phi3.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3 model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
+
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class Phi3Config(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the
|
36 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
+
Dropout probability for mlp outputs.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio after computing the attention scores.
|
67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
+
The non-linear activation function (function or string) in the decoder.
|
69 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model might ever be used with.
|
71 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
+
original RoPE embeddings when using long scaling.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
+
The epsilon value used for the RMSNorm.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`dict`, *optional*):
|
86 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
88 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
+
divided by the number of attention heads divided by 2.
|
90 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
+
The id of the "beginning-of-sequence" token.
|
92 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the "end-of-sequence" token.
|
94 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
+
The id of the padding token.
|
96 |
+
sliding_window (`int`, *optional*):
|
97 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import Phi3Model, Phi3Config
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-3 style configuration
|
105 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = Phi3Model(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi3"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32064,
|
120 |
+
hidden_size=3072,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="silu",
|
129 |
+
max_position_embeddings=4096,
|
130 |
+
original_max_position_embeddings=4096,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-5,
|
133 |
+
use_cache=True,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
bos_token_id=1,
|
138 |
+
eos_token_id=32000,
|
139 |
+
pad_token_id=32000,
|
140 |
+
sliding_window=None,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
+
|
149 |
+
if num_key_value_heads is None:
|
150 |
+
num_key_value_heads = num_attention_heads
|
151 |
+
|
152 |
+
self.num_key_value_heads = num_key_value_heads
|
153 |
+
self.resid_pdrop = resid_pdrop
|
154 |
+
self.embd_pdrop = embd_pdrop
|
155 |
+
self.attention_dropout = attention_dropout
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
+
self.initializer_range = initializer_range
|
160 |
+
self.rms_norm_eps = rms_norm_eps
|
161 |
+
self.use_cache = use_cache
|
162 |
+
self.rope_theta = rope_theta
|
163 |
+
self.rope_scaling = rope_scaling
|
164 |
+
self._rope_scaling_validation()
|
165 |
+
self.sliding_window = sliding_window
|
166 |
+
|
167 |
+
super().__init__(
|
168 |
+
bos_token_id=bos_token_id,
|
169 |
+
eos_token_id=eos_token_id,
|
170 |
+
pad_token_id=pad_token_id,
|
171 |
+
tie_word_embeddings=tie_word_embeddings,
|
172 |
+
**kwargs,
|
173 |
+
)
|
174 |
+
|
175 |
+
def _rope_scaling_validation(self):
|
176 |
+
"""
|
177 |
+
Validate the `rope_scaling` configuration.
|
178 |
+
"""
|
179 |
+
if self.rope_scaling is None:
|
180 |
+
return
|
181 |
+
|
182 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
183 |
+
raise ValueError(
|
184 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
185 |
+
f"got {self.rope_scaling}"
|
186 |
+
)
|
187 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
188 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
189 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
190 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
191 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
192 |
+
if not (
|
193 |
+
isinstance(rope_scaling_short_factor, list)
|
194 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
195 |
+
):
|
196 |
+
raise ValueError(
|
197 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
198 |
+
)
|
199 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
200 |
+
raise ValueError(
|
201 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
202 |
+
)
|
203 |
+
if not (
|
204 |
+
isinstance(rope_scaling_long_factor, list)
|
205 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
206 |
+
):
|
207 |
+
raise ValueError(
|
208 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
209 |
+
)
|
210 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
211 |
+
raise ValueError(
|
212 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
213 |
+
)
|
directml-int4-awq-block-128/genai_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"context_length": 131072,
|
5 |
+
"decoder": {
|
6 |
+
"session_options": {
|
7 |
+
"log_id": "onnxruntime-genai",
|
8 |
+
"provider_options": [
|
9 |
+
{
|
10 |
+
"dml": {}
|
11 |
+
}
|
12 |
+
]
|
13 |
+
},
|
14 |
+
"filename": "model.onnx",
|
15 |
+
"head_size": 128,
|
16 |
+
"hidden_size": 5120,
|
17 |
+
"inputs": {
|
18 |
+
"input_ids": "input_ids",
|
19 |
+
"attention_mask": "attention_mask",
|
20 |
+
"position_ids": "position_ids",
|
21 |
+
"past_key_names": "past_key_values.%d.key",
|
22 |
+
"past_value_names": "past_key_values.%d.value"
|
23 |
+
},
|
24 |
+
"outputs": {
|
25 |
+
"logits": "logits",
|
26 |
+
"present_key_names": "present.%d.key",
|
27 |
+
"present_value_names": "present.%d.value"
|
28 |
+
},
|
29 |
+
"num_attention_heads": 40,
|
30 |
+
"num_hidden_layers": 40,
|
31 |
+
"num_key_value_heads": 10
|
32 |
+
},
|
33 |
+
"eos_token_id": [
|
34 |
+
32000,
|
35 |
+
32001,
|
36 |
+
32007
|
37 |
+
],
|
38 |
+
"pad_token_id": 32000,
|
39 |
+
"type": "phi3",
|
40 |
+
"vocab_size": 32064
|
41 |
+
},
|
42 |
+
"search": {
|
43 |
+
"diversity_penalty": 0.0,
|
44 |
+
"do_sample": false,
|
45 |
+
"early_stopping": true,
|
46 |
+
"length_penalty": 1.0,
|
47 |
+
"max_length": 131072,
|
48 |
+
"min_length": 0,
|
49 |
+
"no_repeat_ngram_size": 0,
|
50 |
+
"num_beams": 1,
|
51 |
+
"num_return_sequences": 1,
|
52 |
+
"past_present_share_buffer": true,
|
53 |
+
"repetition_penalty": 1.0,
|
54 |
+
"temperature": 1.0,
|
55 |
+
"top_k": 1,
|
56 |
+
"top_p": 1.0
|
57 |
+
}
|
58 |
+
}
|
directml-int4-awq-block-128/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daa6891ea212f8ccd9adbc0e00c8cab59a7be841cd6b13e1fa21ba97d86a6d4c
|
3 |
+
size 44520402
|
directml-int4-awq-block-128/model.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b1f7da3ad6d4f56f51ddc54ab71b8e97f8e42bc8c78e0210f0b18303fdd9280
|
3 |
+
size 7496439040
|
directml-int4-awq-block-128/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
directml-int4-awq-block-128/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
directml-int4-awq-block-128/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
directml-int4-awq-block-128/tokenizer_config.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": true,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endoftext|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|assistant|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": true,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "<|placeholder1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": true,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "<|placeholder2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": true,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"32004": {
|
62 |
+
"content": "<|placeholder3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": true,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"32005": {
|
70 |
+
"content": "<|placeholder4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": true,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"32006": {
|
78 |
+
"content": "<|system|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": true,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"32007": {
|
86 |
+
"content": "<|end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": true,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"32008": {
|
94 |
+
"content": "<|placeholder5|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": true,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"32009": {
|
102 |
+
"content": "<|placeholder6|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": true,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"32010": {
|
110 |
+
"content": "<|user|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": true,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"bos_token": "<s>",
|
119 |
+
"chat_template": "{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
|
120 |
+
"clean_up_tokenization_spaces": false,
|
121 |
+
"eos_token": "<|endoftext|>",
|
122 |
+
"legacy": false,
|
123 |
+
"model_max_length": 131072,
|
124 |
+
"pad_token": "<|endoftext|>",
|
125 |
+
"padding_side": "left",
|
126 |
+
"sp_model_kwargs": {},
|
127 |
+
"tokenizer_class": "LlamaTokenizer",
|
128 |
+
"unk_token": "<unk>",
|
129 |
+
"use_default_system_prompt": false
|
130 |
+
}
|