|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CLIP model configuration""" |
|
|
|
|
|
import copy |
|
import os |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.utils import TensorType |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.onnx import OnnxConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CLIPTextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP |
|
text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the text encoder of the CLIP |
|
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 49408): |
|
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`CLIPModel`]. |
|
hidden_size (`int`, *optional*, defaults to 512): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 2048): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
projection_dim (`int`, *optional*, defaults to 512): |
|
Dimensionality of text and vision projection layers. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 8): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 77): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float`, *optional*, defaults to 1.0): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
pad_token_id (`int`, *optional*, defaults to 1): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 49406): |
|
Beginning of stream token id. |
|
eos_token_id (`int`, *optional*, defaults to 49407): |
|
End of stream token id. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CLIPTextConfig, CLIPTextModel |
|
|
|
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration |
|
>>> configuration = CLIPTextConfig() |
|
|
|
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration |
|
>>> model = CLIPTextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "clip_text_model" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=49408, |
|
hidden_size=512, |
|
intermediate_size=2048, |
|
projection_dim=512, |
|
num_hidden_layers=12, |
|
num_attention_heads=8, |
|
max_position_embeddings=77, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-5, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
|
|
|
|
pad_token_id=1, |
|
bos_token_id=49406, |
|
eos_token_id=49407, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.max_position_embeddings = max_position_embeddings |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "clip": |
|
config_dict = config_dict["text_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class CLIPVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a |
|
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP |
|
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
projection_dim (`int`, *optional*, defaults to 512): |
|
Dimensionality of text and vision projection layers. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 32): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float`, *optional*, defaults to 1.0): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CLIPVisionConfig, CLIPVisionModel |
|
|
|
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration |
|
>>> configuration = CLIPVisionConfig() |
|
|
|
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration |
|
>>> model = CLIPVisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "clip_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
projection_dim=512, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=32, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-5, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "clip": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class CLIPConfig(PretrainedConfig): |
|
r""" |
|
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate |
|
a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating |
|
a configuration with the defaults will yield a similar configuration to that of the CLIP |
|
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`CLIPTextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`CLIPVisionConfig`]. |
|
projection_dim (`int`, *optional*, defaults to 512): |
|
Dimensionality of text and vision projection layers. |
|
logit_scale_init_value (`float`, *optional*, defaults to 2.6592): |
|
The initial value of the *logit_scale* parameter. Default is used as per the original CLIP implementation. |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CLIPConfig, CLIPModel |
|
|
|
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration |
|
>>> configuration = CLIPConfig() |
|
|
|
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration |
|
>>> model = CLIPModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
|
|
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig |
|
>>> from transformers import CLIPTextConfig, CLIPVisionConfig |
|
|
|
>>> # Initializing a CLIPText and CLIPVision configuration |
|
>>> config_text = CLIPTextConfig() |
|
>>> config_vision = CLIPVisionConfig() |
|
|
|
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision) |
|
```""" |
|
|
|
model_type = "clip" |
|
|
|
def __init__( |
|
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs |
|
): |
|
|
|
|
|
|
|
text_config_dict = kwargs.pop("text_config_dict", None) |
|
vision_config_dict = kwargs.pop("vision_config_dict", None) |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
|
|
if text_config_dict is not None: |
|
if text_config is None: |
|
text_config = {} |
|
|
|
|
|
_text_config_dict = CLIPTextConfig(**text_config_dict).to_dict() |
|
|
|
|
|
for key, value in _text_config_dict.items(): |
|
if key in text_config and value != text_config[key] and key not in ["transformers_version"]: |
|
|
|
if key in text_config_dict: |
|
message = ( |
|
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " |
|
f'The value `text_config_dict["{key}"]` will be used instead.' |
|
) |
|
|
|
else: |
|
message = ( |
|
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The " |
|
f'value `text_config["{key}"]` will be overridden.' |
|
) |
|
logger.info(message) |
|
|
|
|
|
text_config.update(_text_config_dict) |
|
|
|
if vision_config_dict is not None: |
|
if vision_config is None: |
|
vision_config = {} |
|
|
|
|
|
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict() |
|
|
|
if "id2label" in _vision_config_dict: |
|
_vision_config_dict["id2label"] = { |
|
str(key): value for key, value in _vision_config_dict["id2label"].items() |
|
} |
|
|
|
|
|
for key, value in _vision_config_dict.items(): |
|
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: |
|
|
|
if key in vision_config_dict: |
|
message = ( |
|
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " |
|
f'values. The value `vision_config_dict["{key}"]` will be used instead.' |
|
) |
|
|
|
else: |
|
message = ( |
|
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. " |
|
f'The value `vision_config["{key}"]` will be overridden.' |
|
) |
|
logger.info(message) |
|
|
|
|
|
vision_config.update(_vision_config_dict) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.") |
|
|
|
self.text_config = CLIPTextConfig(**text_config) |
|
self.vision_config = CLIPVisionConfig(**vision_config) |
|
|
|
self.projection_dim = projection_dim |
|
self.logit_scale_init_value = logit_scale_init_value |
|
self.initializer_factor = 1.0 |
|
|
|
@classmethod |
|
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs): |
|
r""" |
|
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model |
|
configuration. |
|
|
|
Returns: |
|
[`CLIPConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) |
|
|
|
|
|
class CLIPOnnxConfig(OnnxConfig): |
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
return OrderedDict( |
|
[ |
|
("input_ids", {0: "batch", 1: "sequence"}), |
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), |
|
("attention_mask", {0: "batch", 1: "sequence"}), |
|
] |
|
) |
|
|
|
@property |
|
def outputs(self) -> Mapping[str, Mapping[int, str]]: |
|
return OrderedDict( |
|
[ |
|
("logits_per_image", {0: "batch"}), |
|
("logits_per_text", {0: "batch"}), |
|
("text_embeds", {0: "batch"}), |
|
("image_embeds", {0: "batch"}), |
|
] |
|
) |
|
|
|
@property |
|
def atol_for_validation(self) -> float: |
|
return 1e-4 |
|
|
|
def generate_dummy_inputs( |
|
self, |
|
processor: "ProcessorMixin", |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
framework: Optional["TensorType"] = None, |
|
) -> Mapping[str, Any]: |
|
text_input_dict = super().generate_dummy_inputs( |
|
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework |
|
) |
|
image_input_dict = super().generate_dummy_inputs( |
|
processor.image_processor, batch_size=batch_size, framework=framework |
|
) |
|
return {**text_input_dict, **image_input_dict} |
|
|
|
@property |
|
def default_onnx_opset(self) -> int: |
|
return 14 |