michelecafagna26
commited on
Commit
ยท
1ef9f84
1
Parent(s):
c780046
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,115 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- hl-scenes
|
5 |
+
|
6 |
+
library_name: pytorch
|
7 |
+
tags:
|
8 |
+
- pytorch
|
9 |
+
- image-to-text
|
10 |
---
|
11 |
+
|
12 |
+
# Model Card: VinVL for Captioning ๐ผ๏ธ
|
13 |
+
|
14 |
+
[Microsoft's VinVL](https://github.com/microsoft/Oscar) base fine-tuned on [HL-scenes]() dataset for **scene description generation** downstream task.
|
15 |
+
|
16 |
+
# Model fine-tuning ๐๏ธโ
|
17 |
+
|
18 |
+
The model has been finetuned for 10 epoch on [HL-scenes]() dataset
|
19 |
+
|
20 |
+
# Test set metrics ๐
|
21 |
+
|
22 |
+
Obtained with beam size 5 and max lenght 20
|
23 |
+
|
24 |
+
| Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE-L | CIDEr | SPICE |
|
25 |
+
|--------|--------|--------|--------|--------|---------|-------|-------|
|
26 |
+
| 0.68 | 0.55 | 0.45 | 0.36 | 0.36 | 0.63 | 1.42 | 0.40 |
|
27 |
+
|
28 |
+
|
29 |
+
# Usage and Installation:
|
30 |
+
|
31 |
+
More info about how to install and use this model can be found here: [michelecafagna26/VinVL
|
32 |
+
](https://github.com/michelecafagna26/VinVL)
|
33 |
+
|
34 |
+
# Feature extraction โ๏ธ
|
35 |
+
|
36 |
+
This model has a separate Visualbackbone used to extract features.
|
37 |
+
More info about:
|
38 |
+
- the model here: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co/michelecafagna26/vinvl_vg_x152c4)
|
39 |
+
- the usage here [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone)
|
40 |
+
|
41 |
+
# Quick start: ๐
|
42 |
+
|
43 |
+
```python
|
44 |
+
from transformers.pytorch_transformers import BertConfig, BertTokenizer
|
45 |
+
from oscar.modeling.modeling_bert import BertForImageCaptioning
|
46 |
+
from oscar.wrappers import OscarTensorizer
|
47 |
+
|
48 |
+
ckpt = "path/to/the/checkpoint"
|
49 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
+
|
51 |
+
# original code
|
52 |
+
config = BertConfig.from_pretrained(ckpt)
|
53 |
+
tokenizer = BertTokenizer.from_pretrained(ckpt)
|
54 |
+
model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device)
|
55 |
+
|
56 |
+
# This takes care of the preprocessing
|
57 |
+
tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device)
|
58 |
+
|
59 |
+
# numpy-arrays with shape (1, num_boxes, feat_size)
|
60 |
+
# feat_size is 2054 by default in VinVL
|
61 |
+
visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0)
|
62 |
+
|
63 |
+
# labels are usually extracted by the features extractor
|
64 |
+
labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']]
|
65 |
+
|
66 |
+
inputs = tensorizer.encode(visual_features, labels=labels)
|
67 |
+
outputs = model(**inputs)
|
68 |
+
|
69 |
+
pred = tensorizer.decode(outputs)
|
70 |
+
|
71 |
+
# the output looks like this:
|
72 |
+
# pred = {0: [{'caption': 'in a library', 'conf': 0.7070220112800598]}
|
73 |
+
```
|
74 |
+
|
75 |
+
# Citations ๐งพ
|
76 |
+
|
77 |
+
This is the model used in:
|
78 |
+
|
79 |
+
```BibTeX
|
80 |
+
@misc{cafagna2022understanding,
|
81 |
+
author = {Cafagna Michele and van Deemter Kees and Gatt Albert},
|
82 |
+
title = {Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions},
|
83 |
+
doi = {10.48550/ARXIV.2211.04971},
|
84 |
+
url = {https://arxiv.org/abs/2211.04971},
|
85 |
+
keywords = {Computation and Language (cs.CL), Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
86 |
+
publisher = {arXiv},
|
87 |
+
year = {2022},
|
88 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
89 |
+
}
|
90 |
+
|
91 |
+
```
|
92 |
+
|
93 |
+
|
94 |
+
Please consider citing the original project and the VinVL paper
|
95 |
+
|
96 |
+
```BibTeX
|
97 |
+
|
98 |
+
@misc{han2021image,
|
99 |
+
title={Image Scene Graph Generation (SGG) Benchmark},
|
100 |
+
author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang},
|
101 |
+
year={2021},
|
102 |
+
eprint={2107.12604},
|
103 |
+
archivePrefix={arXiv},
|
104 |
+
primaryClass={cs.CV}
|
105 |
+
}
|
106 |
+
|
107 |
+
@inproceedings{zhang2021vinvl,
|
108 |
+
title={Vinvl: Revisiting visual representations in vision-language models},
|
109 |
+
author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng},
|
110 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
111 |
+
pages={5579--5588},
|
112 |
+
year={2021}
|
113 |
+
}
|
114 |
+
|
115 |
+
```
|