michalcisek5 commited on
Commit
4f2dbfc
·
1 Parent(s): 03a33d4

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.64 +/- 0.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a29dbfbbfe66a920c3a9914bc31c332a4ab96e73a21362b577ac80798d42342a
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdb226ba820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fdb226be280>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678918111897897307,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHAfbPsKECz1K3gw/HAfbPsKECz1K3gw/HAfbPsKECz1K3gw/HAfbPsKECz1K3gw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtW4vvTWYfL9toFw//1SXv3X8nb9I7UU/rXxXv8lHpL51vjO/svm7P4jP1D/P0LM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcB9s+woQLPUreDD8W3xo7Sng7O9UCP7wcB9s+woQLPUreDD8W3xo7Sng7O9UCP7wcB9s+woQLPUreDD8W3xo7Sng7O9UCP7wcB9s+woQLPUreDD8W3xo7Sng7O9UCP7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.42778862 0.03406215 0.55026686]\n [0.42778862 0.03406215 0.55026686]\n [0.42778862 0.03406215 0.55026686]\n [0.42778862 0.03406215 0.55026686]]",
60
+ "desired_goal": "[[-0.04283019 -0.9866975 0.8618229 ]\n [-1.1822814 -1.2342669 0.7731519 ]\n [-0.84174615 -0.32086018 -0.7021249 ]\n [ 1.4685576 1.6625834 1.4048098 ]]",
61
+ "observation": "[[ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]\n [ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]\n [ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]\n [ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACXOIPG/M1T1LInM+Th7QveBmEr7XLPA9WVzRvSucDT2+rQ0+2re1vXmOBT5aXYQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.01665642 0.10439383 0.2374355 ]\n [-0.1016203 -0.14297056 0.11727303]\n [-0.10222692 0.03457276 0.13835809]\n [-0.08872958 0.1304263 0.06463118]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlUbM7PPY8r+UhpRSlIwBbJRLMowBdJRHQKg0ClOXVsl1fZQoaAZoCWgPQwiSH/Er1vDsv5SGlFKUaBVLMmgWR0CoM80Q9RrKdX2UKGgGaAloD0MI7QvohTtX9L+UhpRSlGgVSzJoFkdAqDOPVoYek3V9lChoBmgJaA9DCEaXN4drdfS/lIaUUpRoFUsyaBZHQKgzUV9F4LV1fZQoaAZoCWgPQwgbhLndy/3zv5SGlFKUaBVLMmgWR0CoNapFb3XadX2UKGgGaAloD0MIn62Dg70J77+UhpRSlGgVSzJoFkdAqDVtnbqQinV9lChoBmgJaA9DCAzohTsXxu+/lIaUUpRoFUsyaBZHQKg1MKl54W11fZQoaAZoCWgPQwgAOzdtxmnrv5SGlFKUaBVLMmgWR0CoNPMFt8/mdX2UKGgGaAloD0MI8PrMWZ9y7r+UhpRSlGgVSzJoFkdAqDeHQID5kHV9lChoBmgJaA9DCK1tisdFtd+/lIaUUpRoFUsyaBZHQKg3Ssqaw2V1fZQoaAZoCWgPQwgEVDiCVIrdv5SGlFKUaBVLMmgWR0CoNw19Wp6ydX2UKGgGaAloD0MIAtiACHGl8L+UhpRSlGgVSzJoFkdAqDbPtx+8XnV9lChoBmgJaA9DCLmrV5HRgem/lIaUUpRoFUsyaBZHQKg5ZLPldTp1fZQoaAZoCWgPQwhyio7k8l/2v5SGlFKUaBVLMmgWR0CoOShysCDFdX2UKGgGaAloD0MISrVPx2OG+L+UhpRSlGgVSzJoFkdAqDjriCJ40XV9lChoBmgJaA9DCPQY5ZmXA/W/lIaUUpRoFUsyaBZHQKg4rhhH9WJ1fZQoaAZoCWgPQwhJERlW8cblv5SGlFKUaBVLMmgWR0CoO2e0w8GLdX2UKGgGaAloD0MI+wRQjCxZ87+UhpRSlGgVSzJoFkdAqDsrp9qk/XV9lChoBmgJaA9DCKneGtgqQeW/lIaUUpRoFUsyaBZHQKg67uGbkOt1fZQoaAZoCWgPQwiOeR1xyAbjv5SGlFKUaBVLMmgWR0CoOrFgtvn9dX2UKGgGaAloD0MIJ6Q1Bp0Q27+UhpRSlGgVSzJoFkdAqD11jG1hLHV9lChoBmgJaA9DCArZeRubneu/lIaUUpRoFUsyaBZHQKg9OTfR/mV1fZQoaAZoCWgPQwg/cJUnELbwv5SGlFKUaBVLMmgWR0CoPPv7WNFSdX2UKGgGaAloD0MIi6iJPh9l0b+UhpRSlGgVSzJoFkdAqDy+cYqG13V9lChoBmgJaA9DCKUuGcdI9u6/lIaUUpRoFUsyaBZHQKg/btaY/ml1fZQoaAZoCWgPQwjEQUKUL2jnv5SGlFKUaBVLMmgWR0CoPzK28Zk1dX2UKGgGaAloD0MI2EXRAx8D7L+UhpRSlGgVSzJoFkdAqD71s7+1jXV9lChoBmgJaA9DCO52vTRFgOe/lIaUUpRoFUsyaBZHQKg+uFmFrVR1fZQoaAZoCWgPQwhRM6SK4lXov5SGlFKUaBVLMmgWR0CoQK75mAbydX2UKGgGaAloD0MIMQdBR6va4L+UhpRSlGgVSzJoFkdAqEBxs2vSt3V9lChoBmgJaA9DCOP8TShEwOW/lIaUUpRoFUsyaBZHQKhAM6cRUWF1fZQoaAZoCWgPQwiSBUzg1l3gv5SGlFKUaBVLMmgWR0CoP/Um2LHddX2UKGgGaAloD0MIwjBgyVUs3r+UhpRSlGgVSzJoFkdAqEHaOxSpBHV9lChoBmgJaA9DCOMcdXRcjea/lIaUUpRoFUsyaBZHQKhBnRa5f+l1fZQoaAZoCWgPQwgp6zcT0wXsv5SGlFKUaBVLMmgWR0CoQV8H4XXRdX2UKGgGaAloD0MI16axvRZ047+UhpRSlGgVSzJoFkdAqEEgmNR3vHV9lChoBmgJaA9DCL3+JD53AuK/lIaUUpRoFUsyaBZHQKhDANFSbYt1fZQoaAZoCWgPQwgot+171N/lv5SGlFKUaBVLMmgWR0CoQsOK4x1xdX2UKGgGaAloD0MIBvNXyFyZ5r+UhpRSlGgVSzJoFkdAqEKFfoicG3V9lChoBmgJaA9DCGNEotCybuq/lIaUUpRoFUsyaBZHQKhCRu/Dcdp1fZQoaAZoCWgPQwjnbtdLUwTov5SGlFKUaBVLMmgWR0CoRC2om5UcdX2UKGgGaAloD0MIVI7J4v4j27+UhpRSlGgVSzJoFkdAqEPwQ176YXV9lChoBmgJaA9DCLlt36P+ete/lIaUUpRoFUsyaBZHQKhDsh3aBZp1fZQoaAZoCWgPQwiaCvFIvDzev5SGlFKUaBVLMmgWR0CoQ3N5t3wDdX2UKGgGaAloD0MINQcI5ujx1L+UhpRSlGgVSzJoFkdAqEVdTDO1OXV9lChoBmgJaA9DCE8IHXQJh+W/lIaUUpRoFUsyaBZHQKhFIA3kxRF1fZQoaAZoCWgPQwiQ14NJ8fHrv5SGlFKUaBVLMmgWR0CoROIgeRxMdX2UKGgGaAloD0MIZ7Yr9MEy2r+UhpRSlGgVSzJoFkdAqESjqptJnXV9lChoBmgJaA9DCJusUQ/R6OS/lIaUUpRoFUsyaBZHQKhGfShrWRR1fZQoaAZoCWgPQwip3EQtzS3qv5SGlFKUaBVLMmgWR0CoRj/v4M4MdX2UKGgGaAloD0MILLtgcM0d37+UhpRSlGgVSzJoFkdAqEYB4jbBXXV9lChoBmgJaA9DCHE9CtejcOa/lIaUUpRoFUsyaBZHQKhFw1xbSql1fZQoaAZoCWgPQwgYCAJk6NjJv5SGlFKUaBVLMmgWR0CoR8yN4qwydX2UKGgGaAloD0MITn0geefQ47+UhpRSlGgVSzJoFkdAqEePXK8tgHV9lChoBmgJaA9DCFCnPLoRFtm/lIaUUpRoFUsyaBZHQKhHUVMVUMp1fZQoaAZoCWgPQwhZvi7Dfzrpv5SGlFKUaBVLMmgWR0CoRxN0FKTTdX2UKGgGaAloD0MI0zHnGfsS47+UhpRSlGgVSzJoFkdAqEjxKtga33V9lChoBmgJaA9DCPz9YrZkVeC/lIaUUpRoFUsyaBZHQKhItMxGlRB1fZQoaAZoCWgPQwgaaam8HeHbv5SGlFKUaBVLMmgWR0CoSHepXIU8dX2UKGgGaAloD0MI7/54r1qZ2L+UhpRSlGgVSzJoFkdAqEg5W/8EV3V9lChoBmgJaA9DCOTZ5VsfVuK/lIaUUpRoFUsyaBZHQKhKF7bcoH91fZQoaAZoCWgPQwjYEByXcdPiv5SGlFKUaBVLMmgWR0CoSdph4MWodX2UKGgGaAloD0MIixagbTXr5L+UhpRSlGgVSzJoFkdAqEmcVvddmnV9lChoBmgJaA9DCJ4nnrMFhNG/lIaUUpRoFUsyaBZHQKhJXbHp8nh1fZQoaAZoCWgPQwht5/up8VLrv5SGlFKUaBVLMmgWR0CoS0M6zVtodX2UKGgGaAloD0MIkGXBxB9F4r+UhpRSlGgVSzJoFkdAqEsF7MPjGXV9lChoBmgJaA9DCMMrSZ7r+9e/lIaUUpRoFUsyaBZHQKhKx/T9bX91fZQoaAZoCWgPQwhPyqSGNgDkv5SGlFKUaBVLMmgWR0CoSolRgqmTdX2UKGgGaAloD0MIWRgip69n47+UhpRSlGgVSzJoFkdAqExmY2Kl6HV9lChoBmgJaA9DCB0ewvhpXOK/lIaUUpRoFUsyaBZHQKhMKRA8jiZ1fZQoaAZoCWgPQwjhz/BmDd7Yv5SGlFKUaBVLMmgWR0CoS+sLF4s3dX2UKGgGaAloD0MIVhFuMqoM2L+UhpRSlGgVSzJoFkdAqEusnogV5HV9lChoBmgJaA9DCLfvUX+9wtS/lIaUUpRoFUsyaBZHQKhNi9rXUYt1fZQoaAZoCWgPQwh7o1aYvlfgv5SGlFKUaBVLMmgWR0CoTU5zYEntdX2UKGgGaAloD0MIS3fX2ZB/5b+UhpRSlGgVSzJoFkdAqE0QT0xubnV9lChoBmgJaA9DCGXjwRa7/eO/lIaUUpRoFUsyaBZHQKhM0a5wwTN1fZQoaAZoCWgPQwgkDtlAutjYv5SGlFKUaBVLMmgWR0CoTq575VOsdX2UKGgGaAloD0MIT5KumXyz2r+UhpRSlGgVSzJoFkdAqE5xPEbYLHV9lChoBmgJaA9DCOjdWFAYlNa/lIaUUpRoFUsyaBZHQKhOMzfrKNh1fZQoaAZoCWgPQwg2zNB4Iojiv5SGlFKUaBVLMmgWR0CoTfSjxkNGdX2UKGgGaAloD0MI0sYRa/Ep6b+UhpRSlGgVSzJoFkdAqE/X60pmVnV9lChoBmgJaA9DCILn3sMlx+C/lIaUUpRoFUsyaBZHQKhPmpjtoi91fZQoaAZoCWgPQwi3t1uSA3bjv5SGlFKUaBVLMmgWR0CoT1xt52QodX2UKGgGaAloD0MImYQLeQS34L+UhpRSlGgVSzJoFkdAqE8d4mkWRHV9lChoBmgJaA9DCEt2bATidee/lIaUUpRoFUsyaBZHQKhQ+6dUbUB1fZQoaAZoCWgPQwhHO2743XTav5SGlFKUaBVLMmgWR0CoUL5paibldX2UKGgGaAloD0MIE0TdByC13r+UhpRSlGgVSzJoFkdAqFCAbADaG3V9lChoBmgJaA9DCHV2MjhKXuK/lIaUUpRoFUsyaBZHQKhQQc6vJRx1fZQoaAZoCWgPQwinejL/6JvYv5SGlFKUaBVLMmgWR0CoUiaJAMUidX2UKGgGaAloD0MITTJyFva07L+UhpRSlGgVSzJoFkdAqFHpRKpT/HV9lChoBmgJaA9DCOiHEcKjjeK/lIaUUpRoFUsyaBZHQKhRq0MPSUl1fZQoaAZoCWgPQwgdAHFXryLiv5SGlFKUaBVLMmgWR0CoUWzZQHiWdX2UKGgGaAloD0MIYcPTK2UZ6r+UhpRSlGgVSzJoFkdAqFNNWyTpxHV9lChoBmgJaA9DCFq9w+3QsOO/lIaUUpRoFUsyaBZHQKhTEBcRlH11fZQoaAZoCWgPQwjO+/84YULuv5SGlFKUaBVLMmgWR0CoUtH5aePJdX2UKGgGaAloD0MIHCPZI9SM6L+UhpRSlGgVSzJoFkdAqFKTVpblinV9lChoBmgJaA9DCAsnaf6Y1ua/lIaUUpRoFUsyaBZHQKhVDirksBh1fZQoaAZoCWgPQwgB+KdUibLpv5SGlFKUaBVLMmgWR0CoVNHJcPe6dX2UKGgGaAloD0MIqwZhbvdy57+UhpRSlGgVSzJoFkdAqFSUunMt9XV9lChoBmgJaA9DCNPAj2rY7+m/lIaUUpRoFUsyaBZHQKhUVvVEuxt1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaf2d377b51c38cd80a69f16fccc9bced9f27c562c470a8a49f5da88eaf7594f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cf8be34c216e6cc315169365dd971a8eb8064211b85a3a5adfafab2f8a2807d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdb226ba820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdb226be280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678918111897897307, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHAfbPsKECz1K3gw/HAfbPsKECz1K3gw/HAfbPsKECz1K3gw/HAfbPsKECz1K3gw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtW4vvTWYfL9toFw//1SXv3X8nb9I7UU/rXxXv8lHpL51vjO/svm7P4jP1D/P0LM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcB9s+woQLPUreDD8W3xo7Sng7O9UCP7wcB9s+woQLPUreDD8W3xo7Sng7O9UCP7wcB9s+woQLPUreDD8W3xo7Sng7O9UCP7wcB9s+woQLPUreDD8W3xo7Sng7O9UCP7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42778862 0.03406215 0.55026686]\n [0.42778862 0.03406215 0.55026686]\n [0.42778862 0.03406215 0.55026686]\n [0.42778862 0.03406215 0.55026686]]", "desired_goal": "[[-0.04283019 -0.9866975 0.8618229 ]\n [-1.1822814 -1.2342669 0.7731519 ]\n [-0.84174615 -0.32086018 -0.7021249 ]\n [ 1.4685576 1.6625834 1.4048098 ]]", "observation": "[[ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]\n [ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]\n [ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]\n [ 0.42778862 0.03406215 0.55026686 0.00236315 0.00286056 -0.01165839]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACXOIPG/M1T1LInM+Th7QveBmEr7XLPA9WVzRvSucDT2+rQ0+2re1vXmOBT5aXYQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01665642 0.10439383 0.2374355 ]\n [-0.1016203 -0.14297056 0.11727303]\n [-0.10222692 0.03457276 0.13835809]\n [-0.08872958 0.1304263 0.06463118]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlUbM7PPY8r+UhpRSlIwBbJRLMowBdJRHQKg0ClOXVsl1fZQoaAZoCWgPQwiSH/Er1vDsv5SGlFKUaBVLMmgWR0CoM80Q9RrKdX2UKGgGaAloD0MI7QvohTtX9L+UhpRSlGgVSzJoFkdAqDOPVoYek3V9lChoBmgJaA9DCEaXN4drdfS/lIaUUpRoFUsyaBZHQKgzUV9F4LV1fZQoaAZoCWgPQwgbhLndy/3zv5SGlFKUaBVLMmgWR0CoNapFb3XadX2UKGgGaAloD0MIn62Dg70J77+UhpRSlGgVSzJoFkdAqDVtnbqQinV9lChoBmgJaA9DCAzohTsXxu+/lIaUUpRoFUsyaBZHQKg1MKl54W11fZQoaAZoCWgPQwgAOzdtxmnrv5SGlFKUaBVLMmgWR0CoNPMFt8/mdX2UKGgGaAloD0MI8PrMWZ9y7r+UhpRSlGgVSzJoFkdAqDeHQID5kHV9lChoBmgJaA9DCK1tisdFtd+/lIaUUpRoFUsyaBZHQKg3Ssqaw2V1fZQoaAZoCWgPQwgEVDiCVIrdv5SGlFKUaBVLMmgWR0CoNw19Wp6ydX2UKGgGaAloD0MIAtiACHGl8L+UhpRSlGgVSzJoFkdAqDbPtx+8XnV9lChoBmgJaA9DCLmrV5HRgem/lIaUUpRoFUsyaBZHQKg5ZLPldTp1fZQoaAZoCWgPQwhyio7k8l/2v5SGlFKUaBVLMmgWR0CoOShysCDFdX2UKGgGaAloD0MISrVPx2OG+L+UhpRSlGgVSzJoFkdAqDjriCJ40XV9lChoBmgJaA9DCPQY5ZmXA/W/lIaUUpRoFUsyaBZHQKg4rhhH9WJ1fZQoaAZoCWgPQwhJERlW8cblv5SGlFKUaBVLMmgWR0CoO2e0w8GLdX2UKGgGaAloD0MI+wRQjCxZ87+UhpRSlGgVSzJoFkdAqDsrp9qk/XV9lChoBmgJaA9DCKneGtgqQeW/lIaUUpRoFUsyaBZHQKg67uGbkOt1fZQoaAZoCWgPQwiOeR1xyAbjv5SGlFKUaBVLMmgWR0CoOrFgtvn9dX2UKGgGaAloD0MIJ6Q1Bp0Q27+UhpRSlGgVSzJoFkdAqD11jG1hLHV9lChoBmgJaA9DCArZeRubneu/lIaUUpRoFUsyaBZHQKg9OTfR/mV1fZQoaAZoCWgPQwg/cJUnELbwv5SGlFKUaBVLMmgWR0CoPPv7WNFSdX2UKGgGaAloD0MIi6iJPh9l0b+UhpRSlGgVSzJoFkdAqDy+cYqG13V9lChoBmgJaA9DCKUuGcdI9u6/lIaUUpRoFUsyaBZHQKg/btaY/ml1fZQoaAZoCWgPQwjEQUKUL2jnv5SGlFKUaBVLMmgWR0CoPzK28Zk1dX2UKGgGaAloD0MI2EXRAx8D7L+UhpRSlGgVSzJoFkdAqD71s7+1jXV9lChoBmgJaA9DCO52vTRFgOe/lIaUUpRoFUsyaBZHQKg+uFmFrVR1fZQoaAZoCWgPQwhRM6SK4lXov5SGlFKUaBVLMmgWR0CoQK75mAbydX2UKGgGaAloD0MIMQdBR6va4L+UhpRSlGgVSzJoFkdAqEBxs2vSt3V9lChoBmgJaA9DCOP8TShEwOW/lIaUUpRoFUsyaBZHQKhAM6cRUWF1fZQoaAZoCWgPQwiSBUzg1l3gv5SGlFKUaBVLMmgWR0CoP/Um2LHddX2UKGgGaAloD0MIwjBgyVUs3r+UhpRSlGgVSzJoFkdAqEHaOxSpBHV9lChoBmgJaA9DCOMcdXRcjea/lIaUUpRoFUsyaBZHQKhBnRa5f+l1fZQoaAZoCWgPQwgp6zcT0wXsv5SGlFKUaBVLMmgWR0CoQV8H4XXRdX2UKGgGaAloD0MI16axvRZ047+UhpRSlGgVSzJoFkdAqEEgmNR3vHV9lChoBmgJaA9DCL3+JD53AuK/lIaUUpRoFUsyaBZHQKhDANFSbYt1fZQoaAZoCWgPQwgot+171N/lv5SGlFKUaBVLMmgWR0CoQsOK4x1xdX2UKGgGaAloD0MIBvNXyFyZ5r+UhpRSlGgVSzJoFkdAqEKFfoicG3V9lChoBmgJaA9DCGNEotCybuq/lIaUUpRoFUsyaBZHQKhCRu/Dcdp1fZQoaAZoCWgPQwjnbtdLUwTov5SGlFKUaBVLMmgWR0CoRC2om5UcdX2UKGgGaAloD0MIVI7J4v4j27+UhpRSlGgVSzJoFkdAqEPwQ176YXV9lChoBmgJaA9DCLlt36P+ete/lIaUUpRoFUsyaBZHQKhDsh3aBZp1fZQoaAZoCWgPQwiaCvFIvDzev5SGlFKUaBVLMmgWR0CoQ3N5t3wDdX2UKGgGaAloD0MINQcI5ujx1L+UhpRSlGgVSzJoFkdAqEVdTDO1OXV9lChoBmgJaA9DCE8IHXQJh+W/lIaUUpRoFUsyaBZHQKhFIA3kxRF1fZQoaAZoCWgPQwiQ14NJ8fHrv5SGlFKUaBVLMmgWR0CoROIgeRxMdX2UKGgGaAloD0MIZ7Yr9MEy2r+UhpRSlGgVSzJoFkdAqESjqptJnXV9lChoBmgJaA9DCJusUQ/R6OS/lIaUUpRoFUsyaBZHQKhGfShrWRR1fZQoaAZoCWgPQwip3EQtzS3qv5SGlFKUaBVLMmgWR0CoRj/v4M4MdX2UKGgGaAloD0MILLtgcM0d37+UhpRSlGgVSzJoFkdAqEYB4jbBXXV9lChoBmgJaA9DCHE9CtejcOa/lIaUUpRoFUsyaBZHQKhFw1xbSql1fZQoaAZoCWgPQwgYCAJk6NjJv5SGlFKUaBVLMmgWR0CoR8yN4qwydX2UKGgGaAloD0MITn0geefQ47+UhpRSlGgVSzJoFkdAqEePXK8tgHV9lChoBmgJaA9DCFCnPLoRFtm/lIaUUpRoFUsyaBZHQKhHUVMVUMp1fZQoaAZoCWgPQwhZvi7Dfzrpv5SGlFKUaBVLMmgWR0CoRxN0FKTTdX2UKGgGaAloD0MI0zHnGfsS47+UhpRSlGgVSzJoFkdAqEjxKtga33V9lChoBmgJaA9DCPz9YrZkVeC/lIaUUpRoFUsyaBZHQKhItMxGlRB1fZQoaAZoCWgPQwgaaam8HeHbv5SGlFKUaBVLMmgWR0CoSHepXIU8dX2UKGgGaAloD0MI7/54r1qZ2L+UhpRSlGgVSzJoFkdAqEg5W/8EV3V9lChoBmgJaA9DCOTZ5VsfVuK/lIaUUpRoFUsyaBZHQKhKF7bcoH91fZQoaAZoCWgPQwjYEByXcdPiv5SGlFKUaBVLMmgWR0CoSdph4MWodX2UKGgGaAloD0MIixagbTXr5L+UhpRSlGgVSzJoFkdAqEmcVvddmnV9lChoBmgJaA9DCJ4nnrMFhNG/lIaUUpRoFUsyaBZHQKhJXbHp8nh1fZQoaAZoCWgPQwht5/up8VLrv5SGlFKUaBVLMmgWR0CoS0M6zVtodX2UKGgGaAloD0MIkGXBxB9F4r+UhpRSlGgVSzJoFkdAqEsF7MPjGXV9lChoBmgJaA9DCMMrSZ7r+9e/lIaUUpRoFUsyaBZHQKhKx/T9bX91fZQoaAZoCWgPQwhPyqSGNgDkv5SGlFKUaBVLMmgWR0CoSolRgqmTdX2UKGgGaAloD0MIWRgip69n47+UhpRSlGgVSzJoFkdAqExmY2Kl6HV9lChoBmgJaA9DCB0ewvhpXOK/lIaUUpRoFUsyaBZHQKhMKRA8jiZ1fZQoaAZoCWgPQwjhz/BmDd7Yv5SGlFKUaBVLMmgWR0CoS+sLF4s3dX2UKGgGaAloD0MIVhFuMqoM2L+UhpRSlGgVSzJoFkdAqEusnogV5HV9lChoBmgJaA9DCLfvUX+9wtS/lIaUUpRoFUsyaBZHQKhNi9rXUYt1fZQoaAZoCWgPQwh7o1aYvlfgv5SGlFKUaBVLMmgWR0CoTU5zYEntdX2UKGgGaAloD0MIS3fX2ZB/5b+UhpRSlGgVSzJoFkdAqE0QT0xubnV9lChoBmgJaA9DCGXjwRa7/eO/lIaUUpRoFUsyaBZHQKhM0a5wwTN1fZQoaAZoCWgPQwgkDtlAutjYv5SGlFKUaBVLMmgWR0CoTq575VOsdX2UKGgGaAloD0MIT5KumXyz2r+UhpRSlGgVSzJoFkdAqE5xPEbYLHV9lChoBmgJaA9DCOjdWFAYlNa/lIaUUpRoFUsyaBZHQKhOMzfrKNh1fZQoaAZoCWgPQwg2zNB4Iojiv5SGlFKUaBVLMmgWR0CoTfSjxkNGdX2UKGgGaAloD0MI0sYRa/Ep6b+UhpRSlGgVSzJoFkdAqE/X60pmVnV9lChoBmgJaA9DCILn3sMlx+C/lIaUUpRoFUsyaBZHQKhPmpjtoi91fZQoaAZoCWgPQwi3t1uSA3bjv5SGlFKUaBVLMmgWR0CoT1xt52QodX2UKGgGaAloD0MImYQLeQS34L+UhpRSlGgVSzJoFkdAqE8d4mkWRHV9lChoBmgJaA9DCEt2bATidee/lIaUUpRoFUsyaBZHQKhQ+6dUbUB1fZQoaAZoCWgPQwhHO2743XTav5SGlFKUaBVLMmgWR0CoUL5paibldX2UKGgGaAloD0MIE0TdByC13r+UhpRSlGgVSzJoFkdAqFCAbADaG3V9lChoBmgJaA9DCHV2MjhKXuK/lIaUUpRoFUsyaBZHQKhQQc6vJRx1fZQoaAZoCWgPQwinejL/6JvYv5SGlFKUaBVLMmgWR0CoUiaJAMUidX2UKGgGaAloD0MITTJyFva07L+UhpRSlGgVSzJoFkdAqFHpRKpT/HV9lChoBmgJaA9DCOiHEcKjjeK/lIaUUpRoFUsyaBZHQKhRq0MPSUl1fZQoaAZoCWgPQwgdAHFXryLiv5SGlFKUaBVLMmgWR0CoUWzZQHiWdX2UKGgGaAloD0MIYcPTK2UZ6r+UhpRSlGgVSzJoFkdAqFNNWyTpxHV9lChoBmgJaA9DCFq9w+3QsOO/lIaUUpRoFUsyaBZHQKhTEBcRlH11fZQoaAZoCWgPQwjO+/84YULuv5SGlFKUaBVLMmgWR0CoUtH5aePJdX2UKGgGaAloD0MIHCPZI9SM6L+UhpRSlGgVSzJoFkdAqFKTVpblinV9lChoBmgJaA9DCAsnaf6Y1ua/lIaUUpRoFUsyaBZHQKhVDirksBh1fZQoaAZoCWgPQwgB+KdUibLpv5SGlFKUaBVLMmgWR0CoVNHJcPe6dX2UKGgGaAloD0MIqwZhbvdy57+UhpRSlGgVSzJoFkdAqFSUunMt9XV9lChoBmgJaA9DCNPAj2rY7+m/lIaUUpRoFUsyaBZHQKhUVvVEuxt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (336 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.6380385446595028, "std_reward": 0.12928260134278446, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T23:00:31.713210"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48b3feec2eae91cd8f2835378b449699e8f59dd5abf5c85e15bc01239608e99c
3
+ size 3056