michalcisek5 commited on
Commit
7d617c5
·
1 Parent(s): 462de60

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1385.48 +/- 471.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30b088714adda07afa5fff0c6781e3492df9c49c25186ff2582fd7c9c546cee9
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdb226ba0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdb226ba160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdb226ba1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdb226ba280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdb226ba310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdb226ba3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdb226ba430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdb226ba4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdb226ba550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdb226ba5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdb226ba670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdb226ba700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fdb226be0c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678914250083438938,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMJ/Uj4IHO2+JbgFPxw9ZT+UU7g/FmVuvvoYgT5UETa+1VZePi/DEj7f7UA/I4KsP37srT5myJ+/hAsqvbsuUMD96SU/IBlWvpe4oD3bDhRAC0xAPvMBjT/b3lC/smSNwGGQfD8C0Qo/B9XfPiWln7//i2g/no6JPU+ZDz/EWoM/pThHvToRbT6DdCA/wn6yvwNkNT9nV7a7qTSgP436Mr9wzHg/vYGFPxOHkD7DS7k/tzp2P22pqD/X6sI+meaqv+loBj+PLny+7JsHQMcRMj/LvYG/AtEKPwfV3z5aQU0/gfspP/f1D8Bjpx/ALKW+vwx2Ej/r1Q6/4J3RPn0bKED5BZi/wqr5P52yVb9crlq/IJOkv5uUbz/DjBs/wKyXv065xr/S5URA5Vl6wNZAlj0+7uM7MZfvP/ZVU7+Z0ys+YZB8P38N7L8H1d8+WkFNPzu8Eb+NqQbARbrSvwx/a76NusU/eOSRPwR2rT5SPXc/qgj4PswZnkAt8/m97fgzPdHj0T6/hyBAPbwVv644mr3+04+/a74pQErGmL4mFeS+Boxqvry/J0AyxSO/tT2wPmGQfD9/Dey/B9XfPlpBTT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA0Maq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApBYkPQAAAADRbfq/AAAAAAxirr0AAAAASe3aPwAAAADq0sa7AAAAAPm89z8AAAAAZIO2PQAAAADkSvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcsmmtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgChV770AAAAAf0DvvwAAAAAsKga+AAAAACh65D8AAAAAZEaSvQAAAAAaBPk/AAAAAKCLwbwAAAAAt43nvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqTmbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHxgI8AAAAAKG+4r8AAAAABuvovQAAAAAxUQFAAAAAABnRkD0AAAAAVb7iPwAAAAClRBI+AAAAAIY9/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHaHg0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIO5pvQAAAACO996/AAAAAOJRE70AAAAAWY39PwAAAACyd1c5AAAAAEqR8z8AAAAAyFBXPAAAAADo/Nm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJozeEzwc5uMAWyUTegDjAF0lEdAqyGfPu5SWXV9lChoBkdAnChK0hNdq2gHTegDaAhHQKskMzzErG11fZQoaAZHQJoLh/J/5L1oB03oA2gIR0CrJM44ACGOdX2UKGgGR0CcPIBf8dgfaAdN6ANoCEdAqy5FH+ZPVXV9lChoBkdAlQCm6XjU/mgHTegDaAhHQKsw/vsqril1fZQoaAZHQJBqyNWEK3NoB03oA2gIR0CrNKpDVpbmdX2UKGgGR0CYebPTG5tnaAdN6ANoCEdAqzVAkLQXynV9lChoBkdAm26XxnWat2gHTegDaAhHQKs8uRq46Op1fZQoaAZHQJzvs9LYf4hoB03oA2gIR0CrPmBWHUMHdX2UKGgGR0CYZgOqNp/PaAdN6ANoCEdAq0D07MgU13V9lChoBkdAldfjER8MNWgHTegDaAhHQKtBh50r9VF1fZQoaAZHQJ3tyLDQ7cRoB03oA2gIR0CrSXNjCpFTdX2UKGgGR0Cc+ZG6PKdQaAdN6ANoCEdAq0vFEE1VHXV9lChoBkdAmyH6ZYxL02gHTegDaAhHQKtP/HOryUd1fZQoaAZHQJ0JMC8vmHRoB03oA2gIR0CrUOwLNOdodX2UKGgGR0CdeSxagVXWaAdN6ANoCEdAq1kU45tFa3V9lChoBkdAm/E2TTvy9WgHTegDaAhHQKtasSW7e2x1fZQoaAZHQJ5KjEvTPSloB03oA2gIR0CrXVYOc2BKdX2UKGgGR0CckDxbSqlxaAdN6ANoCEdAq13luLrHEXV9lChoBkdAmWF1fZ26kWgHTegDaAhHQKtlL9H+ZPV1fZQoaAZHQJ3RgdxQzk9oB03oA2gIR0CrZtsOwxFidX2UKGgGR0CdLVBY3eenaAdN6ANoCEdAq2rBCMPz4HV9lChoBkdAnkZR/iHZb2gHTegDaAhHQKtrp863iJh1fZQoaAZHQJ5U//Ot4iZoB03oA2gIR0CrdYgLqlgudX2UKGgGR0Cbqk8BMi8naAdN6ANoCEdAq3cWGTLW7XV9lChoBkdAm2JgyM1jzGgHTegDaAhHQKt5rlbNbC91fZQoaAZHQJ2BMa0hNdtoB03oA2gIR0Crej8ma6SUdX2UKGgGR0Cdmk7xNIsiaAdN6ANoCEdAq4GsM9bHInV9lChoBkdAlu0XW4EwFmgHTegDaAhHQKuDR3Ehq0t1fZQoaAZHQJv58slLOA1oB03oA2gIR0CrhdDMeOn3dX2UKGgGR0Cb5qAMlTm5aAdN6ANoCEdAq4aWEK3NLXV9lChoBkdAnadMzAN5MWgHTegDaAhHQKuR/QvYe1d1fZQoaAZHQJwc3Q8fV7RoB03oA2gIR0Crk5MWweNldX2UKGgGR0CdLRtlI3BIaAdN6ANoCEdAq5Y13yI553V9lChoBkdAn5mQdsBQvmgHTegDaAhHQKuW2Ce2/i51fZQoaAZHQJ2aJ64UeuFoB03oA2gIR0CrnmngxagVdX2UKGgGR0CecPct5D7ZaAdN6ANoCEdAq5/4TM7lrHV9lChoBkdAmOxkE1VHWmgHTegDaAhHQKuilFUADJV1fZQoaAZHQJ1wS3F1jiJoB03oA2gIR0CroyXxnWaudX2UKGgGR0Cce7VW0Z3taAdN6ANoCEdAq62MYyfthXV9lChoBkdAmobOARTS9mgHTegDaAhHQKuwIHKOktV1fZQoaAZHQJx9vasZHd5oB03oA2gIR0CrswpDeCTVdX2UKGgGR0CbYeUzKs+3aAdN6ANoCEdAq7OblvIfbXV9lChoBkdAnZxGoJiRXGgHTegDaAhHQKu7O4QSSNh1fZQoaAZHQJ7h6y7f51xoB03oA2gIR0CrvNHw5NoKdX2UKGgGR0CdgKWsRxtIaAdN6ANoCEdAq7997Qb++HV9lChoBkdAnTQUE9t/F2gHTegDaAhHQKvAGTviLl51fZQoaAZHQJ4ytQCSzPdoB03oA2gIR0CryWQj2SMcdX2UKGgGR0CfU5/Yao/BaAdN6ANoCEdAq8wZacI7eXV9lChoBkdAnj+EfLcKxGgHTegDaAhHQKvQSZeiSJV1fZQoaAZHQKAICJAt4A1oB03oA2gIR0Cr0OGoR7JGdX2UKGgGR0CeLYujRD1HaAdN6ANoCEdAq9h4CSzPbHV9lChoBkdAn+sclLOAy2gHTegDaAhHQKvaHeMQ2/B1fZQoaAZHQKDqnUy57PZoB03oA2gIR0Cr3MvTG5tndX2UKGgGR0CeThD5TIeYaAdN6ANoCEdAq91wJVsDXHV9lChoBkdAoDN2+RHPNWgHTegDaAhHQKvlgzeGfwt1fZQoaAZHQJ0nyWiUPhBoB03oA2gIR0Cr6AVschkidX2UKGgGR0CdXuXg9/z8aAdN6ANoCEdAq+xVSuQp4XV9lChoBkdAnlqrl7tzCGgHTegDaAhHQKvtSe/YapB1fZQoaAZHQJaiy0ojOcFoB03oA2gIR0Cr9bg1WKdhdX2UKGgGR0CgYVN4JNTMaAdN6ANoCEdAq/dVM7EHdHV9lChoBkdAnBpArUb1iGgHTegDaAhHQKv6A0TlDF91fZQoaAZHQJ9bW4kNWlxoB03oA2gIR0Cr+pWKl54XdX2UKGgGR0CY9/fm9xp+aAdN6ANoCEdArAIrAUL2H3V9lChoBkdAl2xvICEHuGgHTegDaAhHQKwD8mR/3Fl1fZQoaAZHQJfJnnq3VkNoB03oA2gIR0CsCAT9CNS7dX2UKGgGR0CbahsK9f1IaAdN6ANoCEdArAjyV4X403V9lChoBkdAmAZ0oF3Y+WgHTegDaAhHQKwS4+C9RJp1fZQoaAZHQIUGbtgKF7FoB03oA2gIR0CsFI4xk/bCdX2UKGgGR0CMViNlyzX0aAdN6ANoCEdArBcl9BrvcHV9lChoBkdAk/b1S88La2gHTegDaAhHQKwXuCaJAMV1fZQoaAZHQJdE3VFx4ptoB03oA2gIR0CsHx8t5D7ZdX2UKGgGR0CWc1Aksz2waAdN6ANoCEdArCCxgE2YOXV9lChoBkdAmUE6lP8AJmgHTegDaAhHQKwjqF/x2B91fZQoaAZHQJhnzuLJjlRoB03oA2gIR0CsJI4Yzi0fdX2UKGgGR0CbyQLxI8QqaAdN6ANoCEdArC+6CnP3SXV9lChoBkdAmoN5y6tknWgHTegDaAhHQKwxX9qk/KR1fZQoaAZHQJkgghbGFSNoB03oA2gIR0CsM/aQFLWadX2UKGgGR0CdimajesPraAdN6ANoCEdArDSHy7PIGXV9lChoBkdAmqESaiKziWgHTegDaAhHQKw76eIVM251fZQoaAZHQJz5P7l7tzFoB03oA2gIR0CsPYAJC0F9dX2UKGgGR0CcUiT9bX6JaAdN6ANoCEdArEAT8vVVgnV9lChoBkdAmRYR9Tgl4WgHTegDaAhHQKxAqI2wV0t1fZQoaAZHQJsLN5prULFoB03oA2gIR0CsS8+rdWQwdX2UKGgGR0B93DyOJcgRaAdN6ANoCEdArE4v3BYV7HV9lChoBkdAkHWm6oVEeGgHTegDaAhHQKxQ/+1jRUp1fZQoaAZHQIvMBvFWGRFoB03oA2gIR0CsUZakRBeHdX2UKGgGR0CRkeTtb9qDaAdN6ANoCEdArFlNr9ETg3V9lChoBkdAlh+aIFeOXGgHTegDaAhHQKxa81LrX191fZQoaAZHQHXPsfms/6hoB03oA2gIR0CsXZ5f+jubdX2UKGgGR0CG0KD4gzP9aAdN6ANoCEdArF4yOBDohnV9lChoBkdAjjBSwOe8PGgHTegDaAhHQKxoKdjoZAJ1fZQoaAZHQJbYF/QSi/RoB03oA2gIR0CsauQO4G2UdX2UKGgGR0CNQZTEzfrKaAdN6ANoCEdArG5zGDL8rXV9lChoBkdAhpYf0Eovz2gHTegDaAhHQKxvB9rGipN1fZQoaAZHQJQ2hvcafjFoB03oA2gIR0CsdnstK7I1dX2UKGgGR0CJ7H3pOerdaAdN6ANoCEdArHgRFG5MDnV9lChoBkdAfvUS+xnnMmgHTegDaAhHQKx6tENvwVl1fZQoaAZHQJS0F84PwuxoB03oA2gIR0Csez88DB/JdX2UKGgGR0CcyZ9Hc1wYaAdN6ANoCEdArIN/qu8sc3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bd02007a32e0c0e263023b5e7b4b6c958f16643dbabc8783329f1bbae5767c3
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29659433e5ab3645638557a78c93e4f89850d4b2e967accafa851d067e97c665
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdb226ba0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdb226ba160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdb226ba1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdb226ba280>", "_build": "<function ActorCriticPolicy._build at 0x7fdb226ba310>", "forward": "<function ActorCriticPolicy.forward at 0x7fdb226ba3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdb226ba430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdb226ba4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdb226ba550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdb226ba5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdb226ba670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdb226ba700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdb226be0c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678914250083438938, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMJ/Uj4IHO2+JbgFPxw9ZT+UU7g/FmVuvvoYgT5UETa+1VZePi/DEj7f7UA/I4KsP37srT5myJ+/hAsqvbsuUMD96SU/IBlWvpe4oD3bDhRAC0xAPvMBjT/b3lC/smSNwGGQfD8C0Qo/B9XfPiWln7//i2g/no6JPU+ZDz/EWoM/pThHvToRbT6DdCA/wn6yvwNkNT9nV7a7qTSgP436Mr9wzHg/vYGFPxOHkD7DS7k/tzp2P22pqD/X6sI+meaqv+loBj+PLny+7JsHQMcRMj/LvYG/AtEKPwfV3z5aQU0/gfspP/f1D8Bjpx/ALKW+vwx2Ej/r1Q6/4J3RPn0bKED5BZi/wqr5P52yVb9crlq/IJOkv5uUbz/DjBs/wKyXv065xr/S5URA5Vl6wNZAlj0+7uM7MZfvP/ZVU7+Z0ys+YZB8P38N7L8H1d8+WkFNPzu8Eb+NqQbARbrSvwx/a76NusU/eOSRPwR2rT5SPXc/qgj4PswZnkAt8/m97fgzPdHj0T6/hyBAPbwVv644mr3+04+/a74pQErGmL4mFeS+Boxqvry/J0AyxSO/tT2wPmGQfD9/Dey/B9XfPlpBTT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA0Maq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApBYkPQAAAADRbfq/AAAAAAxirr0AAAAASe3aPwAAAADq0sa7AAAAAPm89z8AAAAAZIO2PQAAAADkSvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcsmmtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgChV770AAAAAf0DvvwAAAAAsKga+AAAAACh65D8AAAAAZEaSvQAAAAAaBPk/AAAAAKCLwbwAAAAAt43nvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqTmbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHxgI8AAAAAKG+4r8AAAAABuvovQAAAAAxUQFAAAAAABnRkD0AAAAAVb7iPwAAAAClRBI+AAAAAIY9/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHaHg0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIO5pvQAAAACO996/AAAAAOJRE70AAAAAWY39PwAAAACyd1c5AAAAAEqR8z8AAAAAyFBXPAAAAADo/Nm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJozeEzwc5uMAWyUTegDjAF0lEdAqyGfPu5SWXV9lChoBkdAnChK0hNdq2gHTegDaAhHQKskMzzErG11fZQoaAZHQJoLh/J/5L1oB03oA2gIR0CrJM44ACGOdX2UKGgGR0CcPIBf8dgfaAdN6ANoCEdAqy5FH+ZPVXV9lChoBkdAlQCm6XjU/mgHTegDaAhHQKsw/vsqril1fZQoaAZHQJBqyNWEK3NoB03oA2gIR0CrNKpDVpbmdX2UKGgGR0CYebPTG5tnaAdN6ANoCEdAqzVAkLQXynV9lChoBkdAm26XxnWat2gHTegDaAhHQKs8uRq46Op1fZQoaAZHQJzvs9LYf4hoB03oA2gIR0CrPmBWHUMHdX2UKGgGR0CYZgOqNp/PaAdN6ANoCEdAq0D07MgU13V9lChoBkdAldfjER8MNWgHTegDaAhHQKtBh50r9VF1fZQoaAZHQJ3tyLDQ7cRoB03oA2gIR0CrSXNjCpFTdX2UKGgGR0Cc+ZG6PKdQaAdN6ANoCEdAq0vFEE1VHXV9lChoBkdAmyH6ZYxL02gHTegDaAhHQKtP/HOryUd1fZQoaAZHQJ0JMC8vmHRoB03oA2gIR0CrUOwLNOdodX2UKGgGR0CdeSxagVXWaAdN6ANoCEdAq1kU45tFa3V9lChoBkdAm/E2TTvy9WgHTegDaAhHQKtasSW7e2x1fZQoaAZHQJ5KjEvTPSloB03oA2gIR0CrXVYOc2BKdX2UKGgGR0CckDxbSqlxaAdN6ANoCEdAq13luLrHEXV9lChoBkdAmWF1fZ26kWgHTegDaAhHQKtlL9H+ZPV1fZQoaAZHQJ3RgdxQzk9oB03oA2gIR0CrZtsOwxFidX2UKGgGR0CdLVBY3eenaAdN6ANoCEdAq2rBCMPz4HV9lChoBkdAnkZR/iHZb2gHTegDaAhHQKtrp863iJh1fZQoaAZHQJ5U//Ot4iZoB03oA2gIR0CrdYgLqlgudX2UKGgGR0Cbqk8BMi8naAdN6ANoCEdAq3cWGTLW7XV9lChoBkdAm2JgyM1jzGgHTegDaAhHQKt5rlbNbC91fZQoaAZHQJ2BMa0hNdtoB03oA2gIR0Crej8ma6SUdX2UKGgGR0Cdmk7xNIsiaAdN6ANoCEdAq4GsM9bHInV9lChoBkdAlu0XW4EwFmgHTegDaAhHQKuDR3Ehq0t1fZQoaAZHQJv58slLOA1oB03oA2gIR0CrhdDMeOn3dX2UKGgGR0Cb5qAMlTm5aAdN6ANoCEdAq4aWEK3NLXV9lChoBkdAnadMzAN5MWgHTegDaAhHQKuR/QvYe1d1fZQoaAZHQJwc3Q8fV7RoB03oA2gIR0Crk5MWweNldX2UKGgGR0CdLRtlI3BIaAdN6ANoCEdAq5Y13yI553V9lChoBkdAn5mQdsBQvmgHTegDaAhHQKuW2Ce2/i51fZQoaAZHQJ2aJ64UeuFoB03oA2gIR0CrnmngxagVdX2UKGgGR0CecPct5D7ZaAdN6ANoCEdAq5/4TM7lrHV9lChoBkdAmOxkE1VHWmgHTegDaAhHQKuilFUADJV1fZQoaAZHQJ1wS3F1jiJoB03oA2gIR0CroyXxnWaudX2UKGgGR0Cce7VW0Z3taAdN6ANoCEdAq62MYyfthXV9lChoBkdAmobOARTS9mgHTegDaAhHQKuwIHKOktV1fZQoaAZHQJx9vasZHd5oB03oA2gIR0CrswpDeCTVdX2UKGgGR0CbYeUzKs+3aAdN6ANoCEdAq7OblvIfbXV9lChoBkdAnZxGoJiRXGgHTegDaAhHQKu7O4QSSNh1fZQoaAZHQJ7h6y7f51xoB03oA2gIR0CrvNHw5NoKdX2UKGgGR0CdgKWsRxtIaAdN6ANoCEdAq7997Qb++HV9lChoBkdAnTQUE9t/F2gHTegDaAhHQKvAGTviLl51fZQoaAZHQJ4ytQCSzPdoB03oA2gIR0CryWQj2SMcdX2UKGgGR0CfU5/Yao/BaAdN6ANoCEdAq8wZacI7eXV9lChoBkdAnj+EfLcKxGgHTegDaAhHQKvQSZeiSJV1fZQoaAZHQKAICJAt4A1oB03oA2gIR0Cr0OGoR7JGdX2UKGgGR0CeLYujRD1HaAdN6ANoCEdAq9h4CSzPbHV9lChoBkdAn+sclLOAy2gHTegDaAhHQKvaHeMQ2/B1fZQoaAZHQKDqnUy57PZoB03oA2gIR0Cr3MvTG5tndX2UKGgGR0CeThD5TIeYaAdN6ANoCEdAq91wJVsDXHV9lChoBkdAoDN2+RHPNWgHTegDaAhHQKvlgzeGfwt1fZQoaAZHQJ0nyWiUPhBoB03oA2gIR0Cr6AVschkidX2UKGgGR0CdXuXg9/z8aAdN6ANoCEdAq+xVSuQp4XV9lChoBkdAnlqrl7tzCGgHTegDaAhHQKvtSe/YapB1fZQoaAZHQJaiy0ojOcFoB03oA2gIR0Cr9bg1WKdhdX2UKGgGR0CgYVN4JNTMaAdN6ANoCEdAq/dVM7EHdHV9lChoBkdAnBpArUb1iGgHTegDaAhHQKv6A0TlDF91fZQoaAZHQJ9bW4kNWlxoB03oA2gIR0Cr+pWKl54XdX2UKGgGR0CY9/fm9xp+aAdN6ANoCEdArAIrAUL2H3V9lChoBkdAl2xvICEHuGgHTegDaAhHQKwD8mR/3Fl1fZQoaAZHQJfJnnq3VkNoB03oA2gIR0CsCAT9CNS7dX2UKGgGR0CbahsK9f1IaAdN6ANoCEdArAjyV4X403V9lChoBkdAmAZ0oF3Y+WgHTegDaAhHQKwS4+C9RJp1fZQoaAZHQIUGbtgKF7FoB03oA2gIR0CsFI4xk/bCdX2UKGgGR0CMViNlyzX0aAdN6ANoCEdArBcl9BrvcHV9lChoBkdAk/b1S88La2gHTegDaAhHQKwXuCaJAMV1fZQoaAZHQJdE3VFx4ptoB03oA2gIR0CsHx8t5D7ZdX2UKGgGR0CWc1Aksz2waAdN6ANoCEdArCCxgE2YOXV9lChoBkdAmUE6lP8AJmgHTegDaAhHQKwjqF/x2B91fZQoaAZHQJhnzuLJjlRoB03oA2gIR0CsJI4Yzi0fdX2UKGgGR0CbyQLxI8QqaAdN6ANoCEdArC+6CnP3SXV9lChoBkdAmoN5y6tknWgHTegDaAhHQKwxX9qk/KR1fZQoaAZHQJkgghbGFSNoB03oA2gIR0CsM/aQFLWadX2UKGgGR0CdimajesPraAdN6ANoCEdArDSHy7PIGXV9lChoBkdAmqESaiKziWgHTegDaAhHQKw76eIVM251fZQoaAZHQJz5P7l7tzFoB03oA2gIR0CsPYAJC0F9dX2UKGgGR0CcUiT9bX6JaAdN6ANoCEdArEAT8vVVgnV9lChoBkdAmRYR9Tgl4WgHTegDaAhHQKxAqI2wV0t1fZQoaAZHQJsLN5prULFoB03oA2gIR0CsS8+rdWQwdX2UKGgGR0B93DyOJcgRaAdN6ANoCEdArE4v3BYV7HV9lChoBkdAkHWm6oVEeGgHTegDaAhHQKxQ/+1jRUp1fZQoaAZHQIvMBvFWGRFoB03oA2gIR0CsUZakRBeHdX2UKGgGR0CRkeTtb9qDaAdN6ANoCEdArFlNr9ETg3V9lChoBkdAlh+aIFeOXGgHTegDaAhHQKxa81LrX191fZQoaAZHQHXPsfms/6hoB03oA2gIR0CsXZ5f+jubdX2UKGgGR0CG0KD4gzP9aAdN6ANoCEdArF4yOBDohnV9lChoBkdAjjBSwOe8PGgHTegDaAhHQKxoKdjoZAJ1fZQoaAZHQJbYF/QSi/RoB03oA2gIR0CsauQO4G2UdX2UKGgGR0CNQZTEzfrKaAdN6ANoCEdArG5zGDL8rXV9lChoBkdAhpYf0Eovz2gHTegDaAhHQKxvB9rGipN1fZQoaAZHQJQ2hvcafjFoB03oA2gIR0CsdnstK7I1dX2UKGgGR0CJ7H3pOerdaAdN6ANoCEdArHgRFG5MDnV9lChoBkdAfvUS+xnnMmgHTegDaAhHQKx6tENvwVl1fZQoaAZHQJS0F84PwuxoB03oA2gIR0Csez88DB/JdX2UKGgGR0CcyZ9Hc1wYaAdN6ANoCEdArIN/qu8sc3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (771 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1385.4791005561303, "std_reward": 471.3413695237436, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T22:06:23.210747"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bf1ba3e8251ef24a62b8df290cea10f74de82e08665281022c33ed05d30fda5
3
+ size 2136