--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-tagalog-profanity-classifier results: [] base_model: https://huggingface.co/jcblaise/roberta-tagalog-base --- # roberta-tagalog-profanity-classifier This model is a fine-tuned version of [jcblaise/roberta-tagalog-base](https://huggingface.co/jcblaise/roberta-tagalog-base) on [mginoben/tagalog-profanity-dataset](https://huggingface.co/datasets/mginoben/tagalog-profanity-dataset) dataset. It achieves the following results on the evaluation set: - Loss: 0.3019 - Accuracy: 0.8898 - Precision: 0.8523 - Recall: 0.8944 - F1: 0.8728 ## Model description The Model classifies tagalog texts that contains profanities as either Abusive or Non-Abusive. It only classifies texts with the following profanities: - bobo - bwiset - gago - kupal - pakshet - pakyu - pucha - punyeta - puta - putangina - tanga - tangina - tarantado - ulol ## Intended uses & limitations For content moderation accross different social medias ## Training and evaluation data - Training: 11,110 - Validation: 2,778 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 174 | 0.3006 | 0.8776 | 0.8620 | 0.8458 | 0.8538 | | No log | 2.0 | 348 | 0.2899 | 0.8834 | 0.8801 | 0.8382 | 0.8586 | | 0.2993 | 3.0 | 522 | 0.2869 | 0.8873 | 0.8491 | 0.8918 | 0.8700 | | 0.2993 | 4.0 | 696 | 0.3019 | 0.8898 | 0.8523 | 0.8944 | 0.8728 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3