--- language: - en license: cc-by-4.0 datasets: - cuad pipeline_tag: question-answering tags: - legal-contract-review - cuad library_name: transformers --- # Model Card for deberta-v2-xlarge-cuad # Model Details ## Model Description - **Developed by:** Hendrycks et al. - **Model type:** Question Answering - **Language(s) (NLP):** en - **License:** cc-by-4.0 - **Related Models:** - **Parent Model:** DeBERTa-v2 - **Resources for more information:** - GitHub Repo: [TheAtticusProject](https://github.com/TheAtticusProject/cuad) - Associated Paper: [CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review](https://arxiv.org/abs/2103.06268) - Project website: [Contract Understanding Atticus Dataset (CUAD)](https://www.atticusprojectai.org/cuad) # Uses ## Direct Use This model can be used for the task of Question Answering on Legal Documents. # Training Details Read: [CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review](https://arxiv.org/abs/2103.06268) for detailed information on training procedure, dataset preprocessing and evaluation. ## Training Data, Procedure, Preprocessing, etc. See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information. ### Software Python, Transformers # Citation **BibTeX:** ``` @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={NeurIPS}, year={2021} } ``` # How to Get Started with the Model Use the code below to get started with the model.
Click to expand ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("mgigena/cuad-deberta-v2-xlarge") model = AutoModelForQuestionAnswering.from_pretrained("mgigena/cuad-deberta-v2-xlarge") ```