--- base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T library_name: peft license: apache-2.0 tags: - axolotl - generated_from_trainer model-index: - name: axolotl-test results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml # Model config adapter: qlora base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T # base_model: meta-llama/Llama-3.2-3B bf16: auto # HF hub config (push to huggingface) # requires HF_TOKEN api key to be set (👈🔑secrets) hf_use_auth_token: true hub_model_id: mgfrantz/axolotl-test mlflow_experiment_name: axolotl-test # # Data config dataset_prepared_path: data chat_template: chatml datasets: - path: data/train.jsonl ds_type: json data_files: - data/train.jsonl conversation: alpaca type: sharegpt test_datasets: - path: data/eval.jsonl ds_type: json # You need to specify a split. For "json" datasets the default split is called "train". split: train type: sharegpt conversation: alpaca data_files: - data/eval.jsonl # Training config debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: false evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine micro_batch_size: 8 model_type: LlamaForCausalLM num_epochs: 4 optimizer: paged_adamw_32bit output_dir: ./outputs/qlora-out pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 sequence_len: 4096 special_tokens: null strict: false tf32: false tokenizer_type: LlamaTokenizer train_on_inputs: false wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# axolotl-test This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4962 | 0.5714 | 1 | 2.4779 | | 5.3564 | 1.0714 | 2 | 2.4760 | | 4.3272 | 1.6429 | 3 | 2.4633 | | 4.7348 | 2.1429 | 4 | 2.4338 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1