--- library_name: transformers license: other base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct tags: - generated_from_trainer datasets: - axolotl_format_deepseek_combined_wm.json model-index: - name: models/deepseek_wm results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.3.dev44+g5bef1906` ```yaml base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct trust_remote_code: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true datasets: - path: axolotl_format_deepseek_combined_wm.json type: input_output dataset_prepared_path: last_run_prepared_deepseek output_dir: ./models/deepseek_wm sequence_len: 4096 wandb_project: agent-v0 wandb_name: deepseek_wm train_on_inputs: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 3 optimizer: adamw_torch learning_rate: 2e-5 xformers_attention: flash_attention: true logging_steps: 5 warmup_steps: 5 saves_per_epoch: 1 weight_decay: 0.0 deepspeed: axolotl/deepspeed_configs/zero3_bf16_cpuoffload_all.json ```

# models/deepseek_wm This model is a fine-tuned version of [deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) on the axolotl_format_deepseek_combined_wm.json dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0