--- license: mit language: - sw metrics: - accuracy - f1 - precision - recall model-index: - name: v1 results: - task: type: Offensive words classifier name: Text Classification metrics: - type: f1 value: 0.9272349272349272 name: F1 Score verified: false - type: precision value: 0.9550321199143469 name: Precision verified: false - type: recall value: 0.901010101010101 name: Recall verified: false - type: accuracy value: 0.9292214357937311 name: Accuracy verified: false datasets: - metabloit/offensive-swahili-text --- # swahBERT This model was fine tuned using the dataset listed below. It achieves the following results on the evaluation set: - Loss: 0.4982 - Accuracy: 0.9292 - Precision: 0.9550 - Recall: 0.9010 - F1: 0.9272 ## Model description This is a fine tuned swahBERT model. You can get the original model from [here](https://github.com/gatimartin/SwahBERT "swahBERT Model") ## Training and evaluation data The model was fine tuned using [this dataset](https://huggingface.co/datasets/metabloit/offensive-swahili-text "Swahili offensive/non-offensive dataset") ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 310 | 0.6506 | 0.9282 | 0.9417 | 0.9131 | 0.9272 | | 0.0189 | 2.0 | 620 | 0.4982 | 0.9292 | 0.9550 | 0.9010 | 0.9272 | | 0.0189 | 3.0 | 930 | 0.5387 | 0.9323 | 0.9693 | 0.8929 | 0.9295 | | 0.0314 | 4.0 | 1240 | 0.6365 | 0.9221 | 0.9524 | 0.8889 | 0.9195 | | 0.0106 | 5.0 | 1550 | 0.6687 | 0.9282 | 0.9473 | 0.9071 | 0.9267 | | 0.0106 | 6.0 | 1860 | 0.6671 | 0.9282 | 0.9454 | 0.9091 | 0.9269 | | 0.0016 | 7.0 | 2170 | 0.6908 | 0.9242 | 0.9468 | 0.8990 | 0.9223 | | 0.0016 | 8.0 | 2480 | 0.6832 | 0.9272 | 0.9471 | 0.9051 | 0.9256 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cpu - Datasets 2.14.5 - Tokenizers 0.13.3 ## References @inproceedings{martin-etal-2022-swahbert, title = "{S}wah{BERT}: Language Model of {S}wahili", author = "Martin, Gati and Mswahili, Medard Edmund and Jeong, Young-Seob and Woo, Jiyoung", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.23", pages = "303--313" }