huseinzol05
commited on
Commit
·
c95789f
1
Parent(s):
794c86c
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ms
|
3 |
+
---
|
4 |
+
|
5 |
+
# t5-3x-super-tiny-standard-bahasa-cased
|
6 |
+
|
7 |
+
Pretrained T5 3x-super-tiny standard language model for Malay.
|
8 |
+
|
9 |
+
## Pretraining Corpus
|
10 |
+
|
11 |
+
`t5-3x-super-tiny-standard-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
|
12 |
+
|
13 |
+
1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
|
14 |
+
2. News title prediction on bahasa news.
|
15 |
+
3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
|
16 |
+
4. Translated QA Natural.
|
17 |
+
5. Text Similarity task on translated SNLI and translated MNLI.
|
18 |
+
6. EN-MS translation.
|
19 |
+
7. MS-EN translation.
|
20 |
+
8. Abstractive Summarization.
|
21 |
+
9. Knowledge Graph triples generation.
|
22 |
+
10. Paraphrase.
|
23 |
+
|
24 |
+
Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare
|
25 |
+
|
26 |
+
## Pretraining details
|
27 |
+
|
28 |
+
- This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU.
|
29 |
+
- All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5
|
30 |
+
|
31 |
+
## Load Pretrained Model
|
32 |
+
|
33 |
+
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
|
34 |
+
|
35 |
+
```python
|
36 |
+
from transformers import T5Tokenizer, T5Model
|
37 |
+
|
38 |
+
model = T5Model.from_pretrained('malay-huggingface/t5-3x-super-tiny-bahasa-cased')
|
39 |
+
tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-3x-super-tiny-bahasa-cased')
|
40 |
+
```
|
41 |
+
|
42 |
+
## Example using T5ForConditionalGeneration
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
46 |
+
|
47 |
+
tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-3x-super-tiny-bahasa-cased')
|
48 |
+
model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-3x-super-tiny-bahasa-cased')
|
49 |
+
input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt')
|
50 |
+
outputs = model.generate(input_ids)
|
51 |
+
print(tokenizer.decode(outputs[0]))
|
52 |
+
```
|
53 |
+
|
54 |
+
Output is,
|
55 |
+
|
56 |
+
```
|
57 |
+
'Mahathir Mohamad'
|
58 |
+
```
|
59 |
+
|
60 |
+
## Supported prefix
|
61 |
+
|
62 |
+
1. `soalan: {string}`, trained using Natural QA.
|
63 |
+
2. `ringkasan: {string}`, for abstractive summarization.
|
64 |
+
3. `tajuk: {string}`, for abstractive title.
|
65 |
+
4. `parafrasa: {string}`, for abstractive paraphrase.
|
66 |
+
5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation.
|
67 |
+
6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation.
|
68 |
+
7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format.
|
69 |
+
8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
|