import gradio as gr from transformers import pipeline, BertTokenizer, BertForSequenceClassification # Charger le modèle zéro-shot de Hugging Face zero_shot_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Charger le modèle few-shot à partir du modèle sauvegardé tokenizer = BertTokenizer.from_pretrained('./animal_offense_model') model = BertForSequenceClassification.from_pretrained('./animal_offense_model') few_shot_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) # Fonction pour classifier le texte avec le modèle zéro-shot def classify_with_zero_shot(input_text): candidate_labels = [ "non-offensive, it's cute! 😇", "very slightly offensive, but not a big deal! 😅", "slightly offensive, just a little! 🤏", "a bit offensive, ouch! 🤭", "moderately offensive, getting there! 😬", "fairly offensive, watch out! 🚨", "offensive, that's a no-no! 🚫", "very offensive, you really shouldn't say that! 😳", "extremely offensive, seriously? 😡", "totally unacceptable and offensive, you are crazy! 🤯" ] result = zero_shot_classifier(input_text, candidate_labels) labels_scores = dict(zip(result["labels"], result["scores"])) return labels_scores # Fonction pour classifier le texte avec votre propre modèle few-shot def classify_with_few_shot(input_text): result = few_shot_classifier(input_text) label = result[0]["label"] score = result[0]["score"] # Ajuster la logique pour garantir l'interprétation correcte des labels if label == "LABEL_0": return {"non-offensive, it's cute! 😇": score, "offensive": 1 - score} elif label == "LABEL_1": return {"offensive": score, "non-offensive, it's cute! 😇": 1 - score} else: return {"unknown": 1.0} # Pour des fins de débogage si un label inattendu est trouvé # Fonction principale pour sélectionner le modèle def classify_text(input_text, model_choice): if model_choice == "Zero-Shot Model": return classify_with_zero_shot(input_text) elif model_choice == "Few-Shot Model": return classify_with_few_shot(input_text) else: return "Please select a valid model." # Liste de phrases exemples (chaque sous-liste est [texte]) example_phrases = [ ["Your dog is the cutest ever!"], ["I think your cat needs to lose some weight."], ["Why would anyone like such an ugly fish?"], ["Oh no, saying that about a rabbit is not okay at all!"], ["That’s a bit harsh on a parrot."], ["You should be more gentle when talking about horses."], ["This kitten is just too adorable!"], ["Wow, calling a bird annoying is really offensive!"], ["That’s a lovely compliment for a hamster!"], ["Saying that a dog smells bad is quite rude!"] ] # Créer une interface Gradio Blocks pour plus de flexibilité with gr.Blocks() as iface: gr.Markdown("# Animal Offense Detector") with gr.Column(): gr.Markdown("## Enter Your Text Below:") text_input = gr.Textbox(lines=5, placeholder="Enter your text here...") model_choice = gr.Radio(choices=["Zero-Shot Model", "Few-Shot Model"], label="Choose Model") label_output = gr.Label(label="Labels and Scores") gr.Interface(fn=classify_text, inputs=[text_input, model_choice], outputs=label_output) gr.Examples(examples=example_phrases, inputs=[text_input]) # Ajouter de l'espacement et une taille de police plus grande pour la documentation gr.Markdown("""