File size: 5,205 Bytes
b24aef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
from transformers import pipeline, BertTokenizer, BertForSequenceClassification
# Charger le modèle zéro-shot de Hugging Face
zero_shot_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Charger le modèle few-shot à partir du modèle sauvegardé
tokenizer = BertTokenizer.from_pretrained('./animal_offense_model')
model = BertForSequenceClassification.from_pretrained('./animal_offense_model')
few_shot_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Fonction pour classifier le texte avec le modèle zéro-shot
def classify_with_zero_shot(input_text):
candidate_labels = [
"non-offensive, it's cute! 😇",
"very slightly offensive, but not a big deal! 😅",
"slightly offensive, just a little! 🤏",
"a bit offensive, ouch! 🤭",
"moderately offensive, getting there! 😬",
"fairly offensive, watch out! 🚨",
"offensive, that's a no-no! 🚫",
"very offensive, you really shouldn't say that! 😳",
"extremely offensive, seriously? 😡",
"totally unacceptable and offensive, you are crazy! 🤯"
]
result = zero_shot_classifier(input_text, candidate_labels)
labels_scores = dict(zip(result["labels"], result["scores"]))
return labels_scores
# Fonction pour classifier le texte avec votre propre modèle few-shot
def classify_with_few_shot(input_text):
result = few_shot_classifier(input_text)
label = result[0]["label"]
score = result[0]["score"]
# Ajuster la logique pour garantir l'interprétation correcte des labels
if label == "LABEL_0":
return {"non-offensive, it's cute! 😇": score, "offensive": 1 - score}
elif label == "LABEL_1":
return {"offensive": score, "non-offensive, it's cute! 😇": 1 - score}
else:
return {"unknown": 1.0} # Pour des fins de débogage si un label inattendu est trouvé
# Fonction principale pour sélectionner le modèle
def classify_text(input_text, model_choice):
if model_choice == "Zero-Shot Model":
return classify_with_zero_shot(input_text)
elif model_choice == "Few-Shot Model":
return classify_with_few_shot(input_text)
else:
return "Please select a valid model."
# Liste de phrases exemples (chaque sous-liste est [texte])
example_phrases = [
["Your dog is the cutest ever!"],
["I think your cat needs to lose some weight."],
["Why would anyone like such an ugly fish?"],
["Oh no, saying that about a rabbit is not okay at all!"],
["That’s a bit harsh on a parrot."],
["You should be more gentle when talking about horses."],
["This kitten is just too adorable!"],
["Wow, calling a bird annoying is really offensive!"],
["That’s a lovely compliment for a hamster!"],
["Saying that a dog smells bad is quite rude!"]
]
# Créer une interface Gradio Blocks pour plus de flexibilité
with gr.Blocks() as iface:
gr.Markdown("# Animal Offense Detector")
with gr.Column():
gr.Markdown("## Enter Your Text Below:")
text_input = gr.Textbox(lines=5, placeholder="Enter your text here...")
model_choice = gr.Radio(choices=["Zero-Shot Model", "Few-Shot Model"], label="Choose Model")
label_output = gr.Label(label="Labels and Scores")
gr.Interface(fn=classify_text, inputs=[text_input, model_choice], outputs=label_output)
gr.Examples(examples=example_phrases, inputs=[text_input])
# Ajouter de l'espacement et une taille de police plus grande pour la documentation
gr.Markdown("""
<div style="margin-top: 40px; font-size: 18px;">
#### Documentation for `Animal Offense Detector`
This script classifies text to determine the level of offense towards animals using two natural language processing models from Hugging Face. Users can choose between a zero-shot model and a few-shot model to evaluate the input text.
#### Libraries Used
- **gradio**: Used to create web-based user interfaces for Python functions.
- **transformers**: Provides machine learning models for natural language processing tasks.
#### Features
1. **Zero-Shot Model Classification**:
- Uses `facebook/bart-large-mnli` to classify text based on several predefined labels.
- This model can understand and classify text without needing specific training for each task.
2. **Few-Shot Model Classification**:
- Uses a custom-trained BERT model to evaluate text as "non-offensive" or "offensive".
- This model provides a quick and accurate classification based on the training data.
3. **Model Selection**:
- The interface allows the user to choose between the zero-shot and few-shot models to classify the text.
4. **Example Phrases**:
- Provides example phrases that the user can select to test the models. Each example is designed to test different levels of potential offense.
</div>
""")
if __name__ == "__main__":
iface.launch(share=True)
|