Text Generation
Transformers
Safetensors
gemma
conversational
text-generation-inference
Inference Endpoints
md-nishat-008 commited on
Commit
8ca81f1
Β·
verified Β·
1 Parent(s): e28a2d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +239 -3
README.md CHANGED
@@ -1,3 +1,239 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: transformers
4
+ datasets:
5
+ - md-nishat-008/Mojo-Corpus
6
+ - md-nishat-008/Mojo-SFT
7
+ - md-nishat-008/Mojo-mSFT
8
+ pipeline_tag: text-generation
9
+ ---
10
+
11
+ <div align="center">
12
+ <h1>πŸ”₯ Mojo-Coder πŸ”₯</h1>
13
+ <em>State-of-the-art Language Model for Mojo Programming</em>
14
+ </div>
15
+
16
+
17
+ <div align="center">
18
+ <table><tr>
19
+ <td><a href="https://arxiv.org/abs/2410.17736"><img src="https://img.shields.io/badge/arXiv-Read_Paper-blue?style=for-the-badge&logo=arxiv" /></a></td>
20
+ <td><a href="mailto:[email protected]"><img src="https://img.shields.io/badge/Email-Contact_Us-blue?style=for-the-badge&logo=gmail" /></a></td>
21
+ </tr></table>
22
+ </div>
23
+
24
+
25
+
26
+ <div align="center">
27
+ <h2>🎯 Background and Motivation</h2>
28
+ </div>
29
+
30
+ Mojo programming language, developed by Modular, has emerged as a game-changing technology in high-performance computing and AI development. Despite its growing popularity and impressive capabilities (up to 68,000x faster than Python!), existing LLMs struggle with Mojo code generation. Mojo-Coder addresses this gap by providing specialized support for Mojo programming, built upon the robust architecture of [CodeGemma-7B-IT](https://huggingface.co/google/codegemma-7b-it/).
31
+
32
+ <div align="center">
33
+ <h2>πŸ€– Model Information</h2>
34
+ </div>
35
+
36
+ Mojo-Coder transforms natural language instructions into optimized Mojo code, supporting multiple languages (English, German, French, Spanish, and Bangla) while maintaining high-quality code generation capabilities.
37
+
38
+ <div align="center">
39
+ <h2>πŸ“ Description</h2>
40
+ </div>
41
+
42
+ The Mojo-Coder family consists of three specialized 7B-parameter models, each built on CodeGemma's architecture:
43
+ | | <h3><a href="https://huggingface.co/md-nishat-008/mojo-coder" style="color: #0969DA;">mojo-coder</a> πŸ”₯</h3> | <h3><a href="https://huggingface.co/md-nishat-008/mojo-coder-it" style="color: #0969DA;">mojo-coder-it</a> πŸŽ†</h3> | <h3><a href="https://huggingface.co/md-nishat-008/mojo-coder-it-m" style="color: #0969DA;">mojo-coder-it-m</a> ⭐</h3> |
44
+ |---------------------------|:---:|:---:|:---:|
45
+ | πŸ”„ Code Completion | βœ… | βœ… | βœ… |
46
+ | πŸ’‘ NL β†’ Code Generation | | βœ… | βœ… |
47
+ | 🌏 Multilingual Support | | | βœ… |
48
+ | πŸ“ Instruction Following | | βœ… | βœ… |
49
+
50
+ <div align="center">
51
+ <h2>πŸš€ Sample Usage</h2>
52
+ </div>
53
+
54
+ Choose the model that best fits your needs:
55
+ - For basic Mojo code completion: [mojo-coder](https://huggingface.co/md-nishat-008/mojo-coder)
56
+ - For English instruction-based code generation: [mojo-coder-it](https://huggingface.co/md-nishat-008/mojo-coder-it)
57
+ - For multilingual support: [mojo-coder-it-m](https://huggingface.co/md-nishat-008/mojo-coder-it-m)
58
+
59
+ Notably, our models significantly outperform current state-of-the-art models including GPT-4o and Claude-3.5-Sonnet on the HumanEval-Mojo benchmark.
60
+
61
+ <div align="center">
62
+ <h3>✨ Let's revolutionize Mojo programming together! ✨</h3>
63
+ </div>
64
+
65
+
66
+
67
+
68
+ <div style="color: red; text-align: center; padding: 10px; margin: 20px 0; border: 2px solid red; border-radius: 5px;">
69
+ <strong>⚠️ IMPORTANT: When using the model, you MUST explicitly mention "Mojo" in your prompts (e.g., "Write a Mojo function to...", "Create Mojo code that...") otherwise the model may not generate Mojo code!</strong>
70
+ </div>
71
+
72
+ #### For Code Generation
73
+
74
+ ```python
75
+ from transformers import GemmaTokenizer, AutoModelForCausalLM
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained("md-nishat-008/Mojo-Coder-it")
78
+ model = AutoModelForCausalLM.from_pretrained("md-nishat-008/Mojo-Coder-it")
79
+
80
+ input_text = "Write me a Mojo function to calculate the nth fibonacci number."
81
+ input_ids = tokenizer(input_text, return_tensors="pt")
82
+
83
+ outputs = model.generate(**input_ids)
84
+ print(tokenizer.decode(outputs[0]))
85
+ ```
86
+
87
+ #### Chat Template
88
+
89
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
90
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
91
+
92
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
93
+
94
+ ```py
95
+ from transformers import AutoModelForCausalLM, AutoTokenizer
96
+ import torch
97
+
98
+ tokenizer = AutoTokenizer.from_pretrained("md-nishat-008/Mojo-Coder-it")
99
+ model = AutoModelForCausalLM.from_pretrained("md-nishat-008/Mojo-Coder-it")
100
+
101
+ chat = [{"role": "user", "content": "Write a function that calculates factorial of a number in Mojo"}]
102
+ inputs = tokenizer.apply_chat_template(chat, tokenize=True, return_tensors="pt").to("cuda")
103
+
104
+ with torch.no_grad():
105
+ outputs = model.generate(
106
+ inputs=inputs,
107
+ max_new_tokens=1000,
108
+ temperature=0.7,
109
+ top_p=0.95,
110
+ pad_token_id=tokenizer.eos_token_id,
111
+ eos_token_id=tokenizer.eos_token_id
112
+ )
113
+
114
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
115
+ ```
116
+
117
+ At this point, the prompt contains the following text:
118
+
119
+ ```
120
+ <bos><start_of_turn>user
121
+ Write a hello world program in Mojo<end_of_turn>
122
+ <start_of_turn>model
123
+ ```
124
+
125
+ As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
126
+ (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
127
+ the `<end_of_turn>` token.
128
+
129
+ You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
130
+ chat template.
131
+
132
+ After the prompt is ready, generation can be performed like this:
133
+
134
+ ```py
135
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
136
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
137
+ ```
138
+
139
+ <div align="center">
140
+ <h2>βš™οΈ Inputs and Outputs</h2>
141
+ </div>
142
+
143
+ **Inputs**:
144
+ - For base model (mojo-coder): code prefix and/or suffix for Mojo code completion
145
+ - For instruction-tuned models (mojo-coder-it & mojo-coder-it-m): natural language prompts/instructions
146
+
147
+ <p style="color: red;"><strong>Note: In prompts, you must explicitly mention "Mojo" (e.g., "Write a Mojo function to...", "Write Mojo code to...") otherwise the models may not generate Mojo code.</strong></p>
148
+
149
+ **Outputs**:
150
+ - For all variants: Mojo code snippets and natural language responses
151
+ - Additional explanations and documentation when requested
152
+
153
+ <div align="center">
154
+ <h2>πŸ“š Model Data</h2>
155
+ </div>
156
+
157
+ ### Training Dataset
158
+
159
+ Using [CodeGemma-7B-IT](https://huggingface.co/google/codegemma-7b-it/) as our base model, we further trained on:
160
+ - [Mojo-Corpus](https://huggingface.co/datasets/md-nishat-008/Mojo_Corpus): 6.5M tokens of curated Mojo code from public repositories
161
+ - [Mojo-SFT](https://huggingface.co/datasets/md-nishat-008/Mojo_SFT): 3,200 instruction-code pairs for English
162
+ - [Mojo-mSFT](https://huggingface.co/datasets/md-nishat-008/Mojo_mSFT): Multilingual instruction-code pairs in 5 languages
163
+
164
+ ### Training Data Processing
165
+
166
+ The following data pre-processing techniques were applied:
167
+ - Rigorous filtering pipeline (F1-F6) to ensure code quality
168
+ - Apache 2.0 license compliance
169
+ - Language detection using fastText
170
+ - Duplicate removal and content validation
171
+ - Expert review for instruction-code pairs
172
+
173
+ <div align="center">
174
+ <h2>πŸ“Š Evaluation Information</h2>
175
+ </div>
176
+
177
+ ### Evaluation Approach
178
+
179
+ We evaluate Mojo-Coder on:
180
+ - [HumanEval-Mojo](https://huggingface.co/datasets/md-nishat-008/HumanEval-Mojo): First benchmark for Mojo code generation
181
+ - Multi-language instruction following
182
+ - Code quality and execution success
183
+
184
+ ### Evaluation Results
185
+
186
+ #### Code Generation Benchmarks (Pass@1)
187
+
188
+ | Model | HumanEval-Mojo |
189
+ |-------|----------------|
190
+ | GPT-4o | 25.5% |
191
+ | Claude-3.5-Sonnet | 39.8% |
192
+ | mojo-coder | 36.7% |
193
+ | mojo-coder-it-m | 61.5% |
194
+ | mojo-coder-it | 66.4% |
195
+
196
+ <div align="center">
197
+ <h2>⚠️ Limitations and Usage</h2>
198
+ </div>
199
+
200
+ ### Intended Usage
201
+ - Mojo code completion and generation
202
+ - Multi-language instruction following
203
+ - Code documentation and explanation
204
+ - Educational support for Mojo programming
205
+
206
+ ### Known Limitations
207
+ - Limited to Mojo programming language
208
+ - Requires explicit mention of "Mojo" in prompts
209
+ - Performance may vary with complex algorithms
210
+ - May occasionally generate Python-like syntax
211
+ - Based on data available up to 2024
212
+
213
+ ### Ethical Considerations
214
+ The model is designed for:
215
+ - Educational and development purposes
216
+ - Open-source contribution to Mojo ecosystem
217
+ - Supporting multilingual access to Mojo programming
218
+
219
+ Code should be reviewed and tested before production use, especially for performance-critical applications.
220
+
221
+
222
+
223
+ <div align="center">
224
+ <h2>πŸ“š Citation</h2>
225
+ </div>
226
+
227
+ If you find our work helpful, please consider citing our paper:
228
+
229
+ <div style="background-color: #f6f8fa; padding: 20px; border-radius: 5px; margin: 10px 0;">
230
+ <p style="margin-bottom: 10px;"><strong>MojoBench: Language Modeling and Benchmarks for Mojo</strong></p>
231
+
232
+ ```bibtex
233
+ @inproceedings{Raihan2024MojoBenchLM,
234
+ title = {MojoBench: Language Modeling and Benchmarks for Mojo},
235
+ author = {Raihan, Nishat and Santos, Joanna C. S. and Zampieri, Marcos},
236
+ year = {2024},
237
+ url = {https://api.semanticscholar.org/CorpusID:273532552}
238
+ }
239
+ ```