--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: microsoft-codebert-base-finetuned-defect-detection results: [] --- # microsoft-codebert-base-finetuned-defect-detection This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6534 - Accuracy: 0.7342 - F1: 0.7413 - Precision: 0.7066 - Recall: 0.7795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4711 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6396 | 1.0 | 996 | 0.5277 | 0.6905 | 0.6502 | 0.7258 | 0.5889 | | 0.4862 | 2.0 | 1993 | 0.5331 | 0.7176 | 0.7393 | 0.6733 | 0.8196 | | 0.4043 | 3.0 | 2989 | 0.5521 | 0.7339 | 0.7343 | 0.7167 | 0.7528 | | 0.3439 | 4.0 | 3986 | 0.5945 | 0.7357 | 0.7422 | 0.7087 | 0.7790 | | 0.2946 | 5.0 | 4980 | 0.6534 | 0.7342 | 0.7413 | 0.7066 | 0.7795 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2