--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: microsoft-codebert-base-finetuned-defect-detection results: [] --- # microsoft-codebert-base-finetuned-defect-detection This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6197 - Accuracy: 0.7382 - Roc Auc: 0.7394 - Precision: 0.7070 - Recall: 0.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4711 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:---------:|:------:| | 0.6456 | 1.0 | 996 | 0.5435 | 0.6832 | 0.6810 | 0.7151 | 0.5843 | | 0.5086 | 2.0 | 1993 | 0.5373 | 0.7113 | 0.7139 | 0.6654 | 0.8227 | | 0.4173 | 3.0 | 2989 | 0.5476 | 0.7289 | 0.7293 | 0.7125 | 0.7461 | | 0.3543 | 4.0 | 3986 | 0.5803 | 0.7357 | 0.7369 | 0.7051 | 0.7888 | | 0.3059 | 5.0 | 4980 | 0.6197 | 0.7382 | 0.7394 | 0.7070 | 0.7924 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2