File size: 2,057 Bytes
6bf17fc
 
 
 
 
 
bb1e736
 
 
6bf17fc
 
 
 
 
 
 
 
 
 
 
 
bfaba8f
 
 
 
 
6bf17fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfaba8f
6bf17fc
bb1e736
bfaba8f
 
6bf17fc
 
bfaba8f
 
6bf17fc
 
 
bb1e736
 
bfaba8f
 
 
 
 
6bf17fc
 
 
 
bfaba8f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: microsoft/codebert-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: microsoft-codebert-base-finetuned-defect-detection
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# microsoft-codebert-base-finetuned-defect-detection

This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6534
- Accuracy: 0.7342
- F1: 0.7413
- Precision: 0.7066
- Recall: 0.7795

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 4711
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6396        | 1.0   | 996  | 0.5277          | 0.6905   | 0.6502 | 0.7258    | 0.5889 |
| 0.4862        | 2.0   | 1993 | 0.5331          | 0.7176   | 0.7393 | 0.6733    | 0.8196 |
| 0.4043        | 3.0   | 2989 | 0.5521          | 0.7339   | 0.7343 | 0.7167    | 0.7528 |
| 0.3439        | 4.0   | 3986 | 0.5945          | 0.7357   | 0.7422 | 0.7087    | 0.7790 |
| 0.2946        | 5.0   | 4980 | 0.6534          | 0.7342   | 0.7413 | 0.7066    | 0.7795 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2