File size: 4,286 Bytes
e2270ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language: pl
tags:
- generated_from_trainer
- text-generation
widget:
- text: "Bolesław Leśmian - polski poeta"
datasets:
- wikipedia
metrics:
- accuracy
model-index:
- name: gpt_neo_pl_125M
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: wikipedia 20220720.pl
type: wikipedia
args: 20220720.pl
metrics:
- name: Accuracy
type: accuracy
value: 0.4312838299951148
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt_neo_pl_125M_v2
This model was trained from scratch on the wikipedia 20220720.pl dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3862
- Accuracy: 0.4313
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 5.9469 | 0.02 | 1000 | 6.5843 | 0.1435 |
| 4.9953 | 0.05 | 2000 | 5.7709 | 0.1911 |
| 4.3754 | 0.07 | 3000 | 5.2624 | 0.2331 |
| 3.9795 | 0.1 | 4000 | 4.8752 | 0.2731 |
| 3.7099 | 0.12 | 5000 | 4.5927 | 0.3039 |
| 3.4747 | 0.15 | 6000 | 4.3942 | 0.3230 |
| 3.343 | 0.17 | 7000 | 4.2879 | 0.3349 |
| 3.2767 | 0.2 | 8000 | 4.1698 | 0.3459 |
| 3.1852 | 0.22 | 9000 | 4.0925 | 0.3534 |
| 3.0871 | 0.25 | 10000 | 4.0239 | 0.3608 |
| 3.0746 | 0.27 | 11000 | 3.9646 | 0.3664 |
| 2.9473 | 0.3 | 12000 | 3.9245 | 0.3706 |
| 2.9737 | 0.32 | 13000 | 3.8742 | 0.3754 |
| 2.9193 | 0.35 | 14000 | 3.8285 | 0.3796 |
| 2.8833 | 0.37 | 15000 | 3.7952 | 0.3837 |
| 2.8533 | 0.4 | 16000 | 3.7616 | 0.3873 |
| 2.8654 | 0.42 | 17000 | 3.7296 | 0.3907 |
| 2.8196 | 0.44 | 18000 | 3.7049 | 0.3936 |
| 2.7883 | 0.47 | 19000 | 3.6786 | 0.3966 |
| 2.747 | 0.49 | 20000 | 3.6488 | 0.3990 |
| 2.7355 | 0.52 | 21000 | 3.6243 | 0.4021 |
| 2.7355 | 0.54 | 22000 | 3.5982 | 0.4053 |
| 2.6999 | 0.57 | 23000 | 3.5765 | 0.4075 |
| 2.7243 | 0.59 | 24000 | 3.5558 | 0.4101 |
| 2.6526 | 0.62 | 25000 | 3.5371 | 0.4125 |
| 2.641 | 0.64 | 26000 | 3.5150 | 0.4146 |
| 2.6602 | 0.67 | 27000 | 3.4971 | 0.4168 |
| 2.644 | 0.69 | 28000 | 3.4812 | 0.4192 |
| 2.6558 | 0.72 | 29000 | 3.4622 | 0.4215 |
| 2.5664 | 0.74 | 30000 | 3.4504 | 0.4229 |
| 2.5669 | 0.77 | 31000 | 3.4376 | 0.4245 |
| 2.5498 | 0.79 | 32000 | 3.4263 | 0.4263 |
| 2.5874 | 0.82 | 33000 | 3.4169 | 0.4274 |
| 2.5555 | 0.84 | 34000 | 3.4067 | 0.4286 |
| 2.5502 | 0.86 | 35000 | 3.3997 | 0.4298 |
| 2.5232 | 0.89 | 36000 | 3.3946 | 0.4302 |
| 2.5369 | 0.91 | 37000 | 3.3898 | 0.4309 |
| 2.5335 | 0.94 | 38000 | 3.3869 | 0.4313 |
| 2.6032 | 0.96 | 39000 | 3.3853 | 0.4315 |
| 2.5244 | 0.99 | 40000 | 3.3850 | 0.4314 |
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.0
- Datasets 2.4.0
- Tokenizers 0.12.1
|