--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-2024-11-25-T17-21-20 results: [] --- # biobert-v1.1-finetuned-medmcqa-2024-11-25-T17-21-20 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2111 - Accuracy: 0.5742 - F1: 0.5753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.7483 | 0.9939 | 142 | 0.9367 | 0.5613 | 0.5628 | | 0.6026 | 1.9921 | 284 | 0.9227 | 0.5685 | 0.5693 | | 0.3491 | 2.9904 | 426 | 1.2111 | 0.5742 | 0.5753 | | 0.2135 | 3.9956 | 569 | 1.5260 | 0.5697 | 0.5704 | | 0.114 | 4.9869 | 710 | 1.9557 | 0.5666 | 0.5672 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3