Text Generation
GGUF
Inference Endpoints
File size: 20,192 Bytes
5b3f614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
---
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zhs
- zht
- zu
pipeline_tag: text-generation
---

<h1 style='text-align: center '>BLOOM LM</h1> 
<h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2> 
<h3 style='text-align: center '>Model Card</h3>
<img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

Version 1.0 / 26.May.2022

# Model Card for Bloom-560m

<!-- Provide a quick summary of what the model is/does. -->

## Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
  4. [Recommendations](#recommendations)
5. [Training Data](#training-data)
6. [Evaluation](#evaluation)
7. [Environmental Impact](#environmental-impact)
8. [Technical Specifications](#techincal-specifications)
9. [Citation](#citation)
10. [Glossary and Calculations](#glossary-and-calculations)
11. [More Information](#more-information)
12. [Model Card Authors](#model-card-authors)
13. [Model Card Contact](#model-card-contact)

## Model Details  

### Model Description
*This section provides information for anyone who wants to know about the model.*
    
- **Developed by:** BigScience ([website](/static-proxy?url=https%3A%2F%2Fbigscience.huggingface.co))%3C%2Fspan%3E

  * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)*
    
- **Model Type:** Transformer-based Language Model
- **Version:** 1.0.0
- **Languages:** Multiple; see [training data](#training-data)
- **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license))
- **Release Date Estimate:** Monday, 11.July.2022
- **Funded by:** 
    
  * The French government.

  * Hugging Face ([website](https://huggingface.co)).

  * Organizations of contributors.  *(Further breakdown of organizations forthcoming.)*


## Uses

*This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. 
It provides information for anyone considering using the model or who is affected by the model.*

    
### Intended Use

This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.

#### **Direct Use**

-   Text generation

-   Exploring characteristics of language generated by a language model

    -   Examples: Cloze tests, counterfactuals, generations with reframings

#### **Downstream Use**

-   Tasks that leverage language models include: Information Extraction, Question Answering, Summarization

### Misuse and Out-of-scope Use
*This section addresses what users ought not do with the model.*

See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.

#### **Out-of-scope Uses**

Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct.  

##### Out-of-scope Uses Include:

-   Usage in biomedical domains, political and legal domains, or finance domains

-   Usage for evaluating or scoring individuals, such as for employment, education, or credit

-   Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct

#### **Misuse**

Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes:

-   Spam generation

-   Disinformation and influence operations

-   Disparagement and defamation

-   Harassment and abuse
  
-   [Deception](#deception)

-   Unconsented impersonation and imitation

-   Unconsented surveillance 

-   Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license)

### Intended Users

#### **Direct Users**

-   General Public

-   Researchers

-   Students

-   Educators

-   Engineers/developers

-   Non-commercial entities

-   Community advocates, including human and civil rights groups

#### Indirect Users

-   Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use)

-   Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license)

#### Others Affected (Parties Prenantes)

-   People and groups referred to by the LLM

-   People and groups exposed to outputs of, or decisions based on, the LLM

-   People and groups whose original work is included in the LLM
    


## Bias, Risks and Limitations
*This section identifies foreseeable harms and misunderstandings.*

    
Model may:

-   Overrepresent some viewpoints and underrepresent others

-   Contain stereotypes
  
-   Contain [personal information](#personal-data-and-information)

-   Generate:

    -   Hateful, abusive, or violent language

    -   Discriminatory or prejudicial language

    -   Content that may not be appropriate for all settings, including sexual content

-   Make errors, including producing incorrect information as if it were factual

-   Generate irrelevant or repetitive outputs

### Recommendations

*This section provides information on warnings and potential mitigations.*


-   Indirect users should be made aware when the content they're working with is created by the LLM.

-   Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.

-   Models pretrained with the LLM should include an updated Model Card.

-   Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.


## Training Data
*This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*

    
Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus).

Training data includes:

-   45 natural languages
    
-   12 programming languages

-   In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.)


#### **Languages**
    
The pie chart shows the distribution of languages in training data.
   
![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true)


**The following table shows the further distribution of Niger-Congo and Indic languages in the training data.**
    
| Niger Congo    | Percentage |         | Indic     | Percentage |
|----------------|------------ |------  |-----------|------------|
| Chi Tumbuka    | 0.00002    |         | Assamese  | 0.01       |
| Kikuyu         | 0.00004    |         | Odia      | 0.04       |
| Bambara        | 0.00004    |         | Gujarati  | 0.04       |
| Akan           | 0.00007    |         | Marathi   | 0.05       |
| Xitsonga       | 0.00007    |         | Punjabi   | 0.05       |
| Sesotho        | 0.00007    |         | Kannada   | 0.06       |
| Chi Chewa      | 0.0001     |         | Nepali    | 0.07       |
| Setswana       | 0.0002     |         | Telugu    | 0.09       |
| Northern Sotho | 0.0002     |         | Malayalam | 0.10       |
| Fon            | 0.0002     |         | Urdu      | 0.10       |
| Kirundi        | 0.0003     |         | Tamil     | 0.20       |
| Wolof          | 0.0004     |         | Bengali   | 0.50       |
| Kuganda        | 0.0004     |         | Hindi     | 0.70       |
| Chi Shona      | 0.001      |
| Isi Zulu       | 0.001      |
| Igbo           | 0.001      |
| Xhosa          | 0.001      |
| Kinyarwanda    | 0.003      |
| Yoruba         | 0.006      |
| Swahili        | 0.02       |


**The following table shows the distribution of programming languages.**

    
| Extension      | Language   | Number of files |
|----------------|------------|-----------------|
| java           | Java       | 5,407,724       |
| php            | PHP        | 4,942,186       |
| cpp            | C++        | 2,503,930       |
| py             | Python     | 2,435,072       |
| js             | JavaScript | 1,905,518       |
| cs             | C#         | 1,577,347       |
| rb             | Ruby       | 6,78,413        |
| cc             | C++        | 443,054         |
| hpp            | C++        | 391,048         |
| lua            | Lua        | 352,317         |
| go             | GO         | 227,763         |
| ts             | TypeScript | 195,254         |
| C              | C          | 134,537         |
| scala          | Scala      | 92,052          |
| hh             | C++        | 67,161          |
| H              | C++        | 55,899          |
| tsx            | TypeScript | 33,107          |
| rs             | Rust       | 29,693          |
| phpt           | PHP        | 9,702           |
| c++            | C++        | 1,342           |
| h++            | C++        | 791             |
| php3           | PHP        | 540             |
| phps           | PHP        | 270             |
| php5           | PHP        | 166             |
| php4           | PHP        | 29              |
    


## Evaluation
*This section describes the evaluation protocols and provides the results.*

### Metrics 
*This section describes the different ways performance is calculated and why.*
    
Includes:

| Metric             | Why chosen                                                         |
|--------------------|--------------------------------------------------------------------|
| [Perplexity](#perplexity)         | Standard metric for quantifying model improvements during training |
| Cross Entropy [Loss](#loss) | Standard objective for language models.                            |

And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_

### Factors 
*This section lists some different aspects of what BLOOM models. Its focus is on those aspects that are likely to give rise to high variance in model behavior.*

- Language, such as English or Yoruba

- Domain, such as newswire or stories
    
- Demographic characteristics, such as gender or nationality

###  Results
*Results are based on the [Factors](#factors) and [Metrics](#metrics).*

**Train-time Evaluation:**

As of 25.May.2022, 15:00 PST:

- Training Loss: 2.0

- Validation Loss: 2.2

- Perplexity: 8.9

(More evaluation scores forthcoming at the end of model training.)




## Environmental Impact

The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
    
**Estimated carbon emissions:**  *(Forthcoming upon completion of training.)*
    
**Estimated electricity usage:** *(Forthcoming upon completion of training.)*


## Technical Specifications
*This section provides information for people who work on model development.*

Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.

**Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)):

* Decoder-only architecture

* Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf))

* ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions

* 559,214,592 parameters:

    * 256,901,120 embedding parameters

    * 24 layers, 16 attention heads

    * Hidden layers are 1024-dimensional

    * Sequence length of 2048 tokens (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))

**Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
    
**Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).

* Hardware: 384 A100 80GB GPUs (48 nodes):
    
    * Additional 32 A100 80GB GPUs (4 nodes) in reserve

    *  8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links

    *   CPU: AMD

    *   CPU memory: 512GB per node

    *   GPU memory: 640GB per node

    *   Inter-node connect: Omni-Path Architecture (OPA)

    *   NCCL-communications network: a fully dedicated subnet

    *   Disc IO network: shared network with other types of nodes

* Software:
  
    *   Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed))

    *   DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed))

    *   PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch))

    *   apex ([Github link](https://github.com/NVIDIA/apex))


### **Training**

Training logs: [Tensorboard link](https://huggingface.co/bigscience/tr11e-350M-logs)

- Training throughput: About 150 TFLOPs per GPU

- Number of epochs: 1 (*current target*)

- Dates:
    
    - Started 11th March, 2022 11:42am PST

    - Ended 5th July, 2022

- Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments and other model sizes)

- Server training location: Île-de-France, France

### **Tokenization**
    
The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using:
    
- A byte-level Byte Pair Encoding (BPE) algorithm 

- A simple pre-tokenization rule, no normalization

- A vocabulary size of 250,680

It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.    
    
## Citation

**Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022



## Glossary and Calculations

*This section defines common terms and how metrics are calculated.*

-   <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss. 

-   <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better.  If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy. 

-   <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).

-   <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).

-   <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).

-  <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
  
- <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))

- <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.


## More Information

    
### Dataset Creation

Blog post detailing the design choices during the dataset creation: /static-proxy?url=https%3A%2F%2Fbigscience.huggingface.co%2Fblog%2Fbuilding-a-tb-scale-multilingual-dataset-for-language-modeling

### Technical Specifications

Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: /static-proxy?url=https%3A%2F%2Fbigscience.huggingface.co%2Fblog%2Fwhat-language-model-to-train-if-you-have-two-million-gpu-hours

More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml

Blog post on the hardware/engineering side: /static-proxy?url=https%3A%2F%2Fbigscience.huggingface.co%2Fblog%2Fwhich-hardware-to-train-a-176b-parameters-model

Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml

Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss

Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md

Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md

### Initial Results

Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book


    
## Model Card Authors
*Ordered roughly chronologically and by amount of time spent.*

Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff

## Model Card Contact

**Send Questions to:** [email protected]