--- license: llama3.2 base_model: - meta-llama/Llama-3.2-11B-Vision-Instruct language: - en - ko tags: - vlm-ko - meta - llama-3.2 - llama-3.2-ko datasets: - maum-ai/General-Evol-VQA ---

# Llama-3.2-MAAL-11B-Vision-v0.1 **Llama-3.2-MAAL-11B-Vision-v0.1** is bilingual multimodal model trained for text and visual understanding across Korean and English languages. We are releasing a [model](https://huggingface.co/maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1), a subset of the [training dataset](https://huggingface.co/datasets/maum-ai/General-Evol-VQA), and a [leaderboard](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) to promote and accelerate the development of Korean Vision-Language Models (VLMs). - **Developed by:** [maum.ai Brain NLP](https://maum-ai.github.io). Jaeyoon Jung, Yoonshik Kim, Yekyung Nah - **Language(s) (NLP):** Korean, English (currently, bilingual) ## Model Description Version 0.1 is fine-tuned by English and Korean VQA datasets with other datasets (OCR, Math, etc)... - We trained this model on 8 H100-80G for 2 days with image-text pair multimodal fine-tuning dataset - [maum-ai/General-Evol-VQA](https://huggingface.co/datasets/maum-ai/General-Evol-VQA) is one of the datasets that we used for fine-tuning. ## sample inference code (GPU) Starting with transformers >= 4.45.0 onward, you can run inference to generate text based on an image and a starting prompt you supply. ``` import requests import torch from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor model_id = "maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1" model = MllamaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) processor = AutoProcessor.from_pretrained(model_id) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" image = Image.open(requests.get(url, stream=True).raw) messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "이 이미지에 대해서 시를 써줘"} ]} ] input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor( image, input_text, add_special_tokens=False, return_tensors="pt" ).to(model.device) output = model.generate(**inputs, max_new_tokens=200) print(processor.decode(output[0])) ``` ## Evaluation Results As the main goal of version 0.1 is **leveraging Korean VQA and OCR capabilities tailored to real-world business use cases**, we select [**KOFFVQA**](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) as our evaluation method to assess the Korean instruction-following skills. |Model|Params (B)|average(↑)| |-|-|-| |NCSOFT/VARCO-VISION-14B|15.2b|66.69| |Qwen/Qwen2-VL-7B-Instruct|8.3b|63.53| |**maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1**|10.7b|61.13| |meta-llama/Llama-3.2-11B-Vision-Instruct|10.7b|50.36| |mistralai/Pixtral-12B-2409|12.7b|44.62| |llava-onevision-qwen2-7b-ov|8b|43.78| |InternVL2-8b|8.1b|32.76| |MiniCPM-V-2_6|8.1b|32.69| Our model has achieved a **20%** performance improvement compared to the previous base model. You can check more results in [this Leaderboard](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) ### We will release enhanced model, v0.2 soon