File size: 3,674 Bytes
bb7f953
 
b7ecd67
f6e6495
b7ecd67
 
 
 
 
 
 
 
 
bb7f953
b7ecd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: llama3
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
language:
- en
- ko
tags:
- facebook
- meta
- llama
- llama-3
- llama-3-ko
---
<p align="left">
  <img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F646484cfb90150b2706df03b%2FBEOyMpnnY9VY2KXlc3V2F.png%26quot%3B%3C%2Fspan%3E width="20%"/>
<p>

# Llama-3-MAAL-8B-Instruct-v0.1
we release MAAL, Multilingual Adaptive Augmentation Language-model which comprises a groundbreaking fusion of multilingual capabilities and adaptive augmentation techniques. 

- **Developed by:** [maum.ai Brain NLP](https://maum-ai.github.io). Jaeyoon Jung, Jinjoo Lee, Yongjae Lee, Dongjun Lee, Woosung Joo
- **Language(s) (NLP):** Korean, English (currently, bilingual)

## Model Description

Version 0.1 uses cross-lingual training to transfer instruction-following capabilities from English to Korean.

- We Trained this model on an 8 H100-80G for 1 day with cross-lingual training dataset
- we recommend using the fixed system prompt for the model unless you fine-tune it
```
๋„ˆ๋Š” ๋งˆ์Œ์—์ด์•„์ด์˜ ์ฑ—๋ด‡ MAAL์ด๋‹ค. ๊ณ ๊ฐ์˜ ์งˆ๋ฌธ์— ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•˜์—ฌ๋ผ.
```

## sample inference code (GPU)

```
import transformers
import torch

model_id = "maum-ai/Llama-3-MAAL-8B-Instruct-v0.1"
model = transformers.AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
streamer = transformers.TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

# we recommend using the fixed prompt for the model unless you fine-tune it
prompt = "๋„ˆ๋Š” ๋งˆ์Œ์—์ด์•„์ด์˜ ์ฑ—๋ด‡ MAAL์ด๋‹ค. ๊ณ ๊ฐ์˜ ์งˆ๋ฌธ์— ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•˜์—ฌ๋ผ."
instruction = "์‚ฌ๊ณผ ํ•œ ๋ฐ•์Šค์—๋Š” ์‚ฌ๊ณผ๊ฐ€ 30๊ฐœ ๋“ค์–ด์žˆ๋Š”๋ฐ, ์ฒ˜์Œ์—๋Š” ์‚ฌ๊ณผ 3๋ฐ•์Šค๊ฐ€ ์žˆ์—ˆ๊ณ , ๋‚ด๊ฐ€ ์‚ฌ๊ณผ 5๊ฐœ๋ฅผ ๋จน์—ˆ์–ด. ๋‚จ์€ ์‚ฌ๊ณผ๋Š” ์ด ๋ช‡๊ฐœ์•ผ?"

messages = [
    {"role": "system", "content": f"{prompt}"},
    {"role": "user", "content": f"{instruction}"}
    ]

inputs = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors='pt').to("cuda")
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=1024, pad_token_id=tokenizer.eos_token_id)
```

## Evaluation Results

As the main goal of version 0.1 is to **transfer instruction-following capabilities from English to Korean** without utilizing continuous pre-training, etc., we select [**LogicKor**](https://github.com/StableFluffy/LogicKor) as our evaluation method to assess the Korean instruction skills. 

We compare our model with a similar parameter model (less than 13B) that has been fine-tuned on the Korean dataset. \* denotes our self-report result.

|Model|single-turn(โ†‘)|multi-turn(โ†‘)|average(โ†‘)|
|-|-|-|-|
|maum-ai/Llama-3-MAAL-8B-Instruct-v0.1*|**5.80**|4.66|**5.23**|
|maywell/Synatra-kiqu-10.7B|5.71|4.73|5.22|
|yanolja/EEVE-Korean-Instruct-10.8B-v1.0|5.78|3.92|4.85|
|nlpai-lab/KULLM3|4.61|**4.83**|4.72|
|MLP-KTLim/llama3-Bllossom*|2.11|1.57|1.84|

## Limitations
Due to this model being trained on a small dataset, it has several limitations.
- Hard to generate diverse Korean texts
- lack of Korean knowledge & Culture (localization)
- Not work with Image inputs and video inputs

## Todo
we will solve these limitations one by one by upgrading this model like as...
- Enhance the Korean generation through Vocabulary Expansion & Continuous pre-training. (more Korean corpus!)
- Localize with cultural adaptation method and additional Korean knowledge data. [*similar idea*](https://aclanthology.org/2023.emnlp-main.18/)
- Develop a Vision Language Model that can handle both video and image inputs. [*similar idea*](https://github.com/PKU-YuanGroup/Video-LLaVA)