--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:200 - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: Como alterar a senha única? sentences: - Siga as instruções em https://senha.ufes.br/site/alteraSenha. - 'Após a viagem, no prazo máximo de 05 (cinco) dias úteis de seu retorno é necessário prestar contas da viagem realizada, mesmo que sem a solicitação de diárias e passagens, sob pena de ficar impossibilitado de receber novas concessões até que a pendência seja regularizada junto ao SCDP. Para isso, é necessário anexar ao processo os seguintes documentos: 1. Relatório de Viagem (preenchido e assinado); 2. Bilhete(s) de passagem(ns) aérea(s) (caso tenha solicitado passagens) ou; 3. Declaração da empresa de transporte (quando for o caso) ou; 4. Recibo de check-in emitido digitalmente pela companhia aérea ou declaração fornecida pela mesma (quando for o caso); 5. Certificado ou Declaração de participação. Assim que anexados ao processo, este deve ser enviado à DCFN para baixa no SCDP e posterior arquivamento. Procedimentos, formulários, dúvidas e orientações estão disponíveis em: https://gestaoadministrativa.saomateus.ufes.br/procedimentos-necessarios-para-solicitacao-de-diarias-e-passagens-aereas-no-ambito-do-ceunesufes' - Envie um e-mail para dasas.ceunes@ufes.br para agendar o atendimento. - source_sentence: Acesso a impressoras e computadores sentences: - Acesse o manual em https://drm.saomateus.ufes.br. - 'Informações sobre pagamento de notas fiscais a fornecedor entrar em contato com a DCFN (Divisão de Contabilidade e Finanças) E-mail institucional do setor: dcfn.ceunes@ufes.br Telefones: 3312-1517 e 3312-1518 Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao' - Para obter acesso a impressoras e computadores da UFES, envie uma solicitação ao setor de TI, especificando os dispositivos necessários. - source_sentence: Formatação de computador sentences: - A formatação de computadores deve ser solicitada diretamente ao suporte de TI, que avaliará a necessidade de backup e reinstalação dos sistemas operacionais. - Siga as orientações em https://senha.ufes.br/site/recuperaCredenciais. - Acesse https://drm.saomateus.ufes.br/comissao-de-inventario. - source_sentence: PC sem acesso ao sistema e rede do ceunes sentences: - Problemas de acesso aos sistemas e rede do CEUNES podem estar relacionados às configurações de rede. Entre em contato com o suporte de TI em https://atendimento.ufes.br para verificar e resolver. - O cronograma está disponível no link https://progep.ufes.br/exames-periodicos. A coleta dos exames laboratoriais será realizada conforme cronograma, das 07h30min às 10:30, na Sala de reuniões, prédio da SUGRAD. Esteja atento ao seu e-mail institucional. - Para instalar uma impressora, solicite o serviço ao suporte de TI em https://atendimento.ufes.br, que poderá auxiliar com a instalação e configuração do equipamento. - source_sentence: Como atualizar o cadastro no Proaes em caso de alteração de renda/composição familiar? sentences: - Acesse https://drm.saomateus.ufes.br → Patrimônio → Agentes Patrimoniais. - Envie um e-mail para dasas.ceunes@ufes.br para agendar atendimento social na DASAS. - Acesse https://senha.ufes.br/site/recuperaCredenciais. datasets: - matunderstars/ufes-qa-data pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) and [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) - [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("matunderstars/ufes-qa-embedding-finetuned-v2.1") # Run inference sentences = [ 'Como atualizar o cadastro no Proaes em caso de alteração de renda/composição familiar?', 'Envie um e-mail para dasas.ceunes@ufes.br para agendar atendimento social na DASAS.', 'Acesse https://senha.ufes.br/site/recuperaCredenciais.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Datasets #### train * Dataset: [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d) * Size: 100 training samples * Columns: question and answer * Approximate statistics based on the first 100 samples: | | question | answer | |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | question | answer | |:----------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Qual é o horário de funcionamento do setor DCFN (Divisão de Contabilidade e Finanças)? | Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao | | Como incluir itens no catálogo de materiais? | Acesse https://compras.ufes.br/inclusao-de-produto-no-catalogo-de-materiais. | | Fiz exames laboratoriais recentemente, devo coletar novamente? | Caso você já tenha realizado os mesmos exames laboratoriais nos últimos 6 meses, favor entrar em contato com o Setor de Enfermagem da DASAS pelo email enfermagem.dasas@ufes.br ou compareça presencialmente no Setor para maiores esclarecimentos. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` #### test * Dataset: [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d) * Size: 100 training samples * Columns: question and answer * Approximate statistics based on the first 100 samples: | | question | answer | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | question | answer | |:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Como solicitar atendimento psicológico? | Envie um e-mail para tullio.brotto@ufes.br ou compareça presencialmente na DASAS para agendamento. | | Como saber o dia da coleta de exames? | O cronograma está disponível no link https://progep.ufes.br/exames-periodicos. A coleta dos exames laboratoriais será realizada conforme cronograma, das 07h30min às 10:30, na Sala de reuniões, prédio da SUGRAD. Esteja atento ao seu e-mail institucional. | | Como solicitar palestras/rodas de conversa sobre questões de cunho psicoemocional? | Envie um e-mail para tullio.brotto@ufes.br para solicitar participação/contribuição em evento. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 180 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 180 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:--------:|:----:|:-------------:| | 71.4286 | 500 | 0.1428 | | 142.8571 | 1000 | 0.0001 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.5.1+cu121 - Accelerate: 1.1.1 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```