mattwharper commited on
Commit
8e01d81
·
verified ·
1 Parent(s): 57d8022

Model save

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.3333333333333333
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 2.0567
37
- - Accuracy: 0.3333
38
 
39
  ## Model description
40
 
@@ -66,10 +66,11 @@ The following hyperparameters were used during training:
66
 
67
  ### Training results
68
 
69
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
- |:-------------:|:------:|:----:|:---------------:|:--------:|
71
- | No log | 0.6667 | 1 | 2.1430 | 0.1905 |
72
- | No log | 2.0 | 3 | 2.0567 | 0.3333 |
 
73
 
74
 
75
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.9762962962962963
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.0641
37
+ - Accuracy: 0.9763
38
 
39
  ## Model description
40
 
 
66
 
67
  ### Training results
68
 
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 0.2668 | 1.0 | 190 | 0.1167 | 0.9630 |
72
+ | 0.1794 | 2.0 | 380 | 0.0837 | 0.9711 |
73
+ | 0.1539 | 3.0 | 570 | 0.0641 | 0.9763 |
74
 
75
 
76
  ### Framework versions