matthieulel commited on
Commit
3f9f18d
·
verified ·
1 Parent(s): 701fa64

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-large-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: vit-large-patch16-224-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-large-patch16-224-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6398
24
+ - Accuracy: 0.8534
25
+ - Precision: 0.8513
26
+ - Recall: 0.8534
27
+ - F1: 0.8511
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 128
48
+ - eval_batch_size: 128
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 512
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.0358 | 0.99 | 31 | 0.7598 | 0.7362 | 0.7425 | 0.7362 | 0.7266 |
62
+ | 0.6822 | 1.98 | 62 | 0.6136 | 0.7920 | 0.7972 | 0.7920 | 0.7899 |
63
+ | 0.6535 | 2.98 | 93 | 0.5416 | 0.8106 | 0.8140 | 0.8106 | 0.8062 |
64
+ | 0.5696 | 4.0 | 125 | 0.5305 | 0.8162 | 0.8195 | 0.8162 | 0.8140 |
65
+ | 0.5435 | 4.99 | 156 | 0.5555 | 0.8145 | 0.8242 | 0.8145 | 0.8161 |
66
+ | 0.4621 | 5.98 | 187 | 0.5075 | 0.8298 | 0.8344 | 0.8298 | 0.8254 |
67
+ | 0.4479 | 6.98 | 218 | 0.5118 | 0.8281 | 0.8291 | 0.8281 | 0.8269 |
68
+ | 0.4318 | 8.0 | 250 | 0.5164 | 0.8196 | 0.8255 | 0.8196 | 0.8166 |
69
+ | 0.4011 | 8.99 | 281 | 0.5087 | 0.8410 | 0.8369 | 0.8410 | 0.8362 |
70
+ | 0.355 | 9.98 | 312 | 0.5063 | 0.8410 | 0.8433 | 0.8410 | 0.8405 |
71
+ | 0.3655 | 10.98 | 343 | 0.5419 | 0.8326 | 0.8343 | 0.8326 | 0.8305 |
72
+ | 0.3292 | 12.0 | 375 | 0.5134 | 0.8439 | 0.8442 | 0.8439 | 0.8415 |
73
+ | 0.3207 | 12.99 | 406 | 0.6285 | 0.8185 | 0.8293 | 0.8185 | 0.8178 |
74
+ | 0.2931 | 13.98 | 437 | 0.5627 | 0.8382 | 0.8395 | 0.8382 | 0.8371 |
75
+ | 0.2817 | 14.98 | 468 | 0.6059 | 0.8207 | 0.8278 | 0.8207 | 0.8215 |
76
+ | 0.2713 | 16.0 | 500 | 0.6140 | 0.8382 | 0.8367 | 0.8382 | 0.8337 |
77
+ | 0.233 | 16.99 | 531 | 0.5992 | 0.8382 | 0.8384 | 0.8382 | 0.8374 |
78
+ | 0.2313 | 17.98 | 562 | 0.6679 | 0.8292 | 0.8343 | 0.8292 | 0.8278 |
79
+ | 0.223 | 18.98 | 593 | 0.6501 | 0.8343 | 0.8386 | 0.8343 | 0.8347 |
80
+ | 0.2126 | 20.0 | 625 | 0.6731 | 0.8343 | 0.8304 | 0.8343 | 0.8296 |
81
+ | 0.2078 | 20.99 | 656 | 0.6335 | 0.8388 | 0.8410 | 0.8388 | 0.8383 |
82
+ | 0.201 | 21.98 | 687 | 0.6120 | 0.8506 | 0.8478 | 0.8506 | 0.8485 |
83
+ | 0.2045 | 22.98 | 718 | 0.6590 | 0.8410 | 0.8389 | 0.8410 | 0.8371 |
84
+ | 0.1759 | 24.0 | 750 | 0.6478 | 0.8489 | 0.8464 | 0.8489 | 0.8457 |
85
+ | 0.1856 | 24.99 | 781 | 0.6604 | 0.8444 | 0.8413 | 0.8444 | 0.8420 |
86
+ | 0.1766 | 25.98 | 812 | 0.6922 | 0.8501 | 0.8491 | 0.8501 | 0.8484 |
87
+ | 0.1841 | 26.98 | 843 | 0.6485 | 0.8501 | 0.8493 | 0.8501 | 0.8486 |
88
+ | 0.1707 | 28.0 | 875 | 0.6393 | 0.8467 | 0.8440 | 0.8467 | 0.8446 |
89
+ | 0.1792 | 28.99 | 906 | 0.6404 | 0.8551 | 0.8525 | 0.8551 | 0.8526 |
90
+ | 0.1713 | 29.76 | 930 | 0.6398 | 0.8534 | 0.8513 | 0.8534 | 0.8511 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:70d2184ff24465169d64e43d7dfe5b84d2f81a543d00cbe40416291597b073c0
3
  size 1213294072
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52018562f0f4b0a9055a15e64f6aa10aceb7c4cb76f4f742ce0672654d2e8c63
3
  size 1213294072