matthieulel
commited on
Model save
Browse files- README.md +98 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-nano-22k-384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: convnextv2-nano-22k-384-finetuned-galaxy10-decals
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# convnextv2-nano-22k-384-finetuned-galaxy10-decals
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co/facebook/convnextv2-nano-22k-384) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4449
|
24 |
+
- Accuracy: 0.8630
|
25 |
+
- Precision: 0.8607
|
26 |
+
- Recall: 0.8630
|
27 |
+
- F1: 0.8610
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- gradient_accumulation_steps: 4
|
51 |
+
- total_train_batch_size: 256
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_ratio: 0.1
|
55 |
+
- num_epochs: 30
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
61 |
+
| 1.6939 | 0.99 | 62 | 1.5326 | 0.4656 | 0.4580 | 0.4656 | 0.4176 |
|
62 |
+
| 0.9882 | 2.0 | 125 | 0.8491 | 0.7142 | 0.7196 | 0.7142 | 0.7066 |
|
63 |
+
| 0.7595 | 2.99 | 187 | 0.6041 | 0.7993 | 0.7990 | 0.7993 | 0.7947 |
|
64 |
+
| 0.6097 | 4.0 | 250 | 0.5397 | 0.8134 | 0.8078 | 0.8134 | 0.8069 |
|
65 |
+
| 0.5565 | 4.99 | 312 | 0.4990 | 0.8286 | 0.8269 | 0.8286 | 0.8268 |
|
66 |
+
| 0.5822 | 6.0 | 375 | 0.4684 | 0.8427 | 0.8425 | 0.8427 | 0.8374 |
|
67 |
+
| 0.5244 | 6.99 | 437 | 0.4484 | 0.8512 | 0.8476 | 0.8512 | 0.8483 |
|
68 |
+
| 0.4957 | 8.0 | 500 | 0.4487 | 0.8506 | 0.8543 | 0.8506 | 0.8514 |
|
69 |
+
| 0.4857 | 8.99 | 562 | 0.4369 | 0.8579 | 0.8572 | 0.8579 | 0.8545 |
|
70 |
+
| 0.4634 | 10.0 | 625 | 0.4104 | 0.8658 | 0.8630 | 0.8658 | 0.8639 |
|
71 |
+
| 0.4433 | 10.99 | 687 | 0.4117 | 0.8664 | 0.8649 | 0.8664 | 0.8651 |
|
72 |
+
| 0.4267 | 12.0 | 750 | 0.4096 | 0.8664 | 0.8632 | 0.8664 | 0.8634 |
|
73 |
+
| 0.4201 | 12.99 | 812 | 0.4212 | 0.8658 | 0.8645 | 0.8658 | 0.8631 |
|
74 |
+
| 0.4176 | 14.0 | 875 | 0.4057 | 0.8681 | 0.8662 | 0.8681 | 0.8650 |
|
75 |
+
| 0.3717 | 14.99 | 937 | 0.4299 | 0.8568 | 0.8547 | 0.8568 | 0.8551 |
|
76 |
+
| 0.3759 | 16.0 | 1000 | 0.4446 | 0.8585 | 0.8563 | 0.8585 | 0.8555 |
|
77 |
+
| 0.3264 | 16.99 | 1062 | 0.4276 | 0.8647 | 0.8630 | 0.8647 | 0.8623 |
|
78 |
+
| 0.3573 | 18.0 | 1125 | 0.4199 | 0.8641 | 0.8621 | 0.8641 | 0.8610 |
|
79 |
+
| 0.3356 | 18.99 | 1187 | 0.4388 | 0.8585 | 0.8597 | 0.8585 | 0.8579 |
|
80 |
+
| 0.3313 | 20.0 | 1250 | 0.4385 | 0.8602 | 0.8585 | 0.8602 | 0.8571 |
|
81 |
+
| 0.3044 | 20.99 | 1312 | 0.4485 | 0.8585 | 0.8578 | 0.8585 | 0.8560 |
|
82 |
+
| 0.3525 | 22.0 | 1375 | 0.4303 | 0.8647 | 0.8641 | 0.8647 | 0.8634 |
|
83 |
+
| 0.3207 | 22.99 | 1437 | 0.4525 | 0.8608 | 0.8597 | 0.8608 | 0.8591 |
|
84 |
+
| 0.3044 | 24.0 | 1500 | 0.4417 | 0.8591 | 0.8578 | 0.8591 | 0.8579 |
|
85 |
+
| 0.3088 | 24.99 | 1562 | 0.4626 | 0.8608 | 0.8586 | 0.8608 | 0.8582 |
|
86 |
+
| 0.2897 | 26.0 | 1625 | 0.4524 | 0.8630 | 0.8606 | 0.8630 | 0.8606 |
|
87 |
+
| 0.2823 | 26.99 | 1687 | 0.4433 | 0.8670 | 0.8657 | 0.8670 | 0.8657 |
|
88 |
+
| 0.2928 | 28.0 | 1750 | 0.4479 | 0.8658 | 0.8629 | 0.8658 | 0.8631 |
|
89 |
+
| 0.2695 | 28.99 | 1812 | 0.4455 | 0.8658 | 0.8637 | 0.8658 | 0.8639 |
|
90 |
+
| 0.274 | 29.76 | 1860 | 0.4449 | 0.8630 | 0.8607 | 0.8630 | 0.8610 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.37.2
|
96 |
+
- Pytorch 2.3.0
|
97 |
+
- Datasets 2.19.1
|
98 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 59975736
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0777a15e95acc27dabf35c74b79e6b6399c275b057d7a36d47b99a076303b10
|
3 |
size 59975736
|