--- base_model: - flammenai/Mahou-1.3-mistral-nemo-12B - nbeerbower/mistral-nemo-gutenberg-12B-v4 - Sao10K/MN-12B-Lyra-v1 - Gryphe/Pantheon-RP-1.5-12b-Nemo library_name: transformers tags: - mergekit - merge --- ![cute](https://huggingface.co/matchaaaaa/MN-Tiramisu-12B/resolve/main/tiramisu-cute.png) # MN-Tiramisu-12B This is a really yappity-yappy yapping model that's good for long-form RP. Tried to rein it in with Mahou and give it some more character understanding with Pantheon. Feedback is always welcome. **Native Context Length: 16K/16384** *(can be extended using RoPE, YMMV)* ## Prompt Template: ChatML ``` <|im_start|>system {system prompt}<|im_end|> <|im_start|>user {message}<|im_end|> <|im_start|>assistant {response} ``` ## Recommended Settings: Here are some settings ranges that tend to work for me. They aren't strict values, and there's a bit of leeway in them. Feel free to experiment a bit! * Temperature: **1.0** (maybe less, a little bit goes a long way with Nemo) * Min-P: **0.1** to **0.2** * *(all other samplers disabled)* ## Merge Details This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ### Merge Method This model was merged using the linear [DARE](https://arxiv.org/abs/2311.03099) merge method using flammenai/Mahou-1.3-mistral-nemo-12B as a base. ### Models Merged The following models were included in the merge: * nbeerbower/mistral-nemo-gutenberg-12B-v4 * Sao10K/MN-12B-Lyra-v1 * Gryphe/Pantheon-RP-1.5-12b-Nemo * flammenai/Mahou-1.3-mistral-nemo-12B ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: flammenai/Mahou-1.3-mistral-nemo-12B dtype: bfloat16 merge_method: dare_linear slices: - sources: - layer_range: [0, 40] model: Gryphe/Pantheon-RP-1.5-12b-Nemo parameters: weight: [0.45, 0.35, 0.35, 0.2, 0.2] - layer_range: [0, 40] model: Sao10K/MN-12B-Lyra-v1 parameters: weight: [0.25, 0.3, 0.35, 0.3, 0.2] - layer_range: [0, 40] model: nbeerbower/mistral-nemo-gutenberg-12B-v4 parameters: weight: - filter: mlp value: [0.1, 0.2, 0.1, 0.4, 0.5] - value: [0.1, 0.2, 0.1, 0.2, 0.2] - layer_range: [0, 40] model: flammenai/Mahou-1.3-mistral-nemo-12B parameters: weight: - filter: mlp value: [0.2, 0.15, 0.2, 0.1, 0.1] - value: [0.2, 0.15, 0.2, 0.3, 0.4] tokenizer_source: union ``` ## Benchmarks (or Benchmark because I tried only one) I ran EQ bench from [EleutherAI's lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) (thank you @FallenMerick). ``` | Tasks |Version|Filter|n-shot| Metric | | Value | |Stderr| |--------|------:|------|-----:|-----------------|---|-------:|---|-----:| |eq_bench| 2.1|none | 0|eqbench |↑ | 79.3617|± | 1.637| | | |none | 0|percent_parseable|↑ |100.0000|± | 0.000| ``` And as always, have a great day!