Translation
Davlan commited on
Commit
ba83001
·
verified ·
1 Parent(s): 3b4c123

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md CHANGED
@@ -1,3 +1,95 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: translation
3
+ language:
4
+ - multilingual
5
+ - af
6
+ - am
7
+ - ar
8
+ - en
9
+ - fr
10
+ - ha
11
+ - ig
12
+ - mg
13
+ - ny
14
+ - om
15
+ - pcm
16
+ - rn
17
+ - rw
18
+ - sn
19
+ - so
20
+ - st
21
+ - sw
22
+ - xh
23
+ - yo
24
+ - zu
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
  license: apache-2.0
33
  ---
34
+
35
+ This is a [AfriCOMET-MTL (multi-task learning)](https://github.com/masakhane-io/africomet) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference.
36
+
37
+ # Paper
38
+
39
+ [AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages](https://arxiv.org/abs/2311.09828) (Wang et al., arXiv 2023)
40
+
41
+ # License
42
+
43
+ Apache-2.0
44
+
45
+ # Usage (unbabel-comet)
46
+
47
+ Using this model requires unbabel-comet to be installed:
48
+
49
+ ```bash
50
+ pip install --upgrade pip # ensures that pip is current
51
+ pip install unbabel-comet
52
+ ```
53
+
54
+ Then you can use it through comet CLI:
55
+
56
+ ```bash
57
+ comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model masakhane/africomet-mtl
58
+ ```
59
+
60
+ Or using Python:
61
+
62
+ ```python
63
+ from comet import download_model, load_from_checkpoint
64
+
65
+ model_path = download_model("masakhane/africomet-mtl")
66
+ model = load_from_checkpoint(model_path)
67
+ data = [
68
+ {
69
+ "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
70
+ "mt": "Nadal's head to head record against the Canadian is 7–2.",
71
+ "ref": "Nadal scored seven unanswered points against Canada."
72
+ },
73
+ {
74
+ "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
75
+ "mt": "He recently lost against Raonic in the Brisbane Open.",
76
+ "ref": "He recently lost to Raoniki in the game Sisi Brisbeni."
77
+ }
78
+ ]
79
+ model_output = model.predict(data, batch_size=8, gpus=1)
80
+ print (model_output)
81
+ ```
82
+
83
+ # Intended uses
84
+
85
+ Our model is intented to be used for **MT evaluation**.
86
+
87
+ Given a a triplet with (source sentence, translation, reference translation) outputs a single score between 0 and 1 where 1 represents a perfect translation.
88
+
89
+ # Languages Covered:
90
+
91
+ This model builds on top of AfroXLMR which cover the following languages:
92
+
93
+ Afrikaans, Arabic, Amharic, English, French, Hausa, Igbo, Malagasy, Chichewa, Oromo, Nigerian-Pidgin, Kinyarwanda, Kirundi, Shona, Somali, Sesotho, Swahili, isiXhosa, Yoruba, and isiZulu.
94
+
95
+ Thus, results for language pairs containing uncovered languages are unreliable!