File size: 1,646 Bytes
a112e29
 
 
 
 
 
 
 
 
80007e5
a112e29
 
 
 
 
 
 
 
 
 
80007e5
a112e29
80007e5
a112e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142c46
 
a112e29
 
 
3f9078a
1142c46
a112e29
 
 
47eb899
a112e29
 
 
9ffcd30
 
80007e5
 
a112e29
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
datasets:
- generator
model-index:
- name: tinyllama-1.1b-sum-sft-qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tinyllama-1.1b-sum-sft-qlora

This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1290

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1288        | 1.0   | 2952 | 2.1338          |
| 2.125         | 2.0   | 5904 | 2.1290          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2