--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8553054662379421 - name: Precision type: precision value: 0.8675973805921082 - name: Recall type: recall value: 0.8553054662379421 - name: F1 type: f1 value: 0.8581712564304036 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2816 - Accuracy: 0.8553 - Precision: 0.8676 - Recall: 0.8553 - F1: 0.8582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5793 | 1.0 | 22 | 0.5874 | 0.6785 | 0.4603 | 0.6785 | 0.5485 | | 0.3711 | 2.0 | 44 | 0.4135 | 0.7781 | 0.8169 | 0.7781 | 0.7395 | | 0.2961 | 3.0 | 66 | 0.2816 | 0.8553 | 0.8676 | 0.8553 | 0.8582 | | 0.2576 | 4.0 | 88 | 0.2899 | 0.7942 | 0.7884 | 0.7942 | 0.7857 | | 0.261 | 5.0 | 110 | 0.2469 | 0.8103 | 0.8057 | 0.8103 | 0.8037 | | 0.2559 | 6.0 | 132 | 0.2548 | 0.8360 | 0.8632 | 0.8360 | 0.8179 | | 0.2249 | 7.0 | 154 | 0.2835 | 0.8135 | 0.8479 | 0.8135 | 0.7882 | | 0.2242 | 8.0 | 176 | 0.2335 | 0.8296 | 0.8261 | 0.8296 | 0.8262 | | 0.2215 | 9.0 | 198 | 0.2293 | 0.8521 | 0.8549 | 0.8521 | 0.8532 | | 0.2269 | 10.0 | 220 | 0.2213 | 0.8424 | 0.8396 | 0.8424 | 0.8393 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1