marinone94 commited on
Commit
63865a1
·
1 Parent(s): 1b2d3ae
all_results.json CHANGED
@@ -1,12 +1,12 @@
1
  {
2
- "epoch": 7.12,
3
- "eval_loss": 0.29696929454803467,
4
- "eval_runtime": 2902.1488,
5
- "eval_samples_per_second": 1.747,
6
- "eval_steps_per_second": 0.109,
7
- "eval_wer": 11.37780883775938,
8
- "train_loss": 0.026056346493959427,
9
- "train_runtime": 20075.1792,
10
- "train_samples_per_second": 3.985,
11
- "train_steps_per_second": 0.125
12
  }
 
1
  {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.24834245443344116,
4
+ "eval_runtime": 2999.4256,
5
+ "eval_samples_per_second": 1.69,
6
+ "eval_steps_per_second": 0.106,
7
+ "eval_wer": 9.891409525857435,
8
+ "train_loss": 0.025400285175442697,
9
+ "train_runtime": 51804.3597,
10
+ "train_samples_per_second": 3.089,
11
+ "train_steps_per_second": 0.097
12
  }
checkpoint-1000/config.json DELETED
@@ -1,41 +0,0 @@
1
- {
2
- "_name_or_path": "marinone94/whisper-medium-nordic",
3
- "activation_dropout": 0.0,
4
- "activation_function": "gelu",
5
- "architectures": [
6
- "WhisperForConditionalGeneration"
7
- ],
8
- "attention_dropout": 0.0,
9
- "begin_suppress_tokens": [
10
- 220,
11
- 50257
12
- ],
13
- "bos_token_id": 50257,
14
- "d_model": 1024,
15
- "decoder_attention_heads": 16,
16
- "decoder_ffn_dim": 4096,
17
- "decoder_layerdrop": 0.0,
18
- "decoder_layers": 24,
19
- "decoder_start_token_id": 50258,
20
- "dropout": 0.0,
21
- "encoder_attention_heads": 16,
22
- "encoder_ffn_dim": 4096,
23
- "encoder_layerdrop": 0.0,
24
- "encoder_layers": 24,
25
- "eos_token_id": 50257,
26
- "forced_decoder_ids": null,
27
- "init_std": 0.02,
28
- "is_encoder_decoder": true,
29
- "max_length": 448,
30
- "max_source_positions": 1500,
31
- "max_target_positions": 448,
32
- "model_type": "whisper",
33
- "num_hidden_layers": 24,
34
- "num_mel_bins": 80,
35
- "pad_token_id": 50257,
36
- "scale_embedding": false,
37
- "torch_dtype": "float32",
38
- "transformers_version": "4.26.0.dev0",
39
- "use_cache": false,
40
- "vocab_size": 51865
41
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1000/optimizer.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2bfff8704bd6704fbfd4aa9975e9d6d8362b15cbf7113f7f23f0eaefcad253fc
3
- size 6111428695
 
 
 
 
checkpoint-1000/preprocessor_config.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:52c4f954de9065deba6c2d5e400f27179e3eb7070e6948847c74977d9c96a8c4
3
- size 3055754841
 
 
 
 
checkpoint-1000/rng_state.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9d2e0f4427086b473c2d8b746cd9a0c73b8d6aa2bbde1faf6cb2428e78028a09
3
- size 14575
 
 
 
 
checkpoint-1000/scaler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:26dbe439de3dd73741374b46df74ee981e9ad3b04a0c5c8a564c625a65b8aee5
3
- size 557
 
 
 
 
checkpoint-1000/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:58c1ed193257a9c4b6ec19ec7a1a09d3fba65f6437077e3c0f61b03457bba09d
3
- size 627
 
 
 
 
checkpoint-1000/trainer_state.json DELETED
@@ -1,265 +0,0 @@
1
- {
2
- "best_metric": 11.942264272658853,
3
- "best_model_checkpoint": "./checkpoint-1000",
4
- "epoch": 3.0208,
5
- "global_step": 1000,
6
- "is_hyper_param_search": false,
7
- "is_local_process_zero": true,
8
- "is_world_process_zero": true,
9
- "log_history": [
10
- {
11
- "epoch": 0.01,
12
- "learning_rate": 9.200000000000001e-07,
13
- "loss": 0.5204,
14
- "step": 25
15
- },
16
- {
17
- "epoch": 0.02,
18
- "learning_rate": 1.9200000000000003e-06,
19
- "loss": 0.0582,
20
- "step": 50
21
- },
22
- {
23
- "epoch": 0.03,
24
- "learning_rate": 2.92e-06,
25
- "loss": 0.0527,
26
- "step": 75
27
- },
28
- {
29
- "epoch": 0.04,
30
- "learning_rate": 3.920000000000001e-06,
31
- "loss": 0.0587,
32
- "step": 100
33
- },
34
- {
35
- "epoch": 0.05,
36
- "learning_rate": 4.92e-06,
37
- "loss": 0.0659,
38
- "step": 125
39
- },
40
- {
41
- "epoch": 0.06,
42
- "learning_rate": 5.92e-06,
43
- "loss": 0.0681,
44
- "step": 150
45
- },
46
- {
47
- "epoch": 0.07,
48
- "learning_rate": 6.92e-06,
49
- "loss": 0.07,
50
- "step": 175
51
- },
52
- {
53
- "epoch": 0.08,
54
- "learning_rate": 7.92e-06,
55
- "loss": 0.0856,
56
- "step": 200
57
- },
58
- {
59
- "epoch": 0.09,
60
- "learning_rate": 8.920000000000001e-06,
61
- "loss": 0.0894,
62
- "step": 225
63
- },
64
- {
65
- "epoch": 0.1,
66
- "learning_rate": 9.920000000000002e-06,
67
- "loss": 0.0751,
68
- "step": 250
69
- },
70
- {
71
- "epoch": 0.11,
72
- "learning_rate": 9.89777777777778e-06,
73
- "loss": 0.0772,
74
- "step": 275
75
- },
76
- {
77
- "epoch": 0.12,
78
- "learning_rate": 9.786666666666667e-06,
79
- "loss": 0.0698,
80
- "step": 300
81
- },
82
- {
83
- "epoch": 1.0,
84
- "learning_rate": 9.675555555555555e-06,
85
- "loss": 0.0893,
86
- "step": 325
87
- },
88
- {
89
- "epoch": 1.01,
90
- "learning_rate": 9.564444444444445e-06,
91
- "loss": 0.0782,
92
- "step": 350
93
- },
94
- {
95
- "epoch": 1.02,
96
- "learning_rate": 9.453333333333335e-06,
97
- "loss": 0.0595,
98
- "step": 375
99
- },
100
- {
101
- "epoch": 1.03,
102
- "learning_rate": 9.342222222222223e-06,
103
- "loss": 0.0537,
104
- "step": 400
105
- },
106
- {
107
- "epoch": 1.04,
108
- "learning_rate": 9.231111111111111e-06,
109
- "loss": 0.052,
110
- "step": 425
111
- },
112
- {
113
- "epoch": 1.05,
114
- "learning_rate": 9.12e-06,
115
- "loss": 0.05,
116
- "step": 450
117
- },
118
- {
119
- "epoch": 1.06,
120
- "learning_rate": 9.008888888888889e-06,
121
- "loss": 0.0522,
122
- "step": 475
123
- },
124
- {
125
- "epoch": 1.07,
126
- "learning_rate": 8.897777777777779e-06,
127
- "loss": 0.0467,
128
- "step": 500
129
- },
130
- {
131
- "epoch": 1.08,
132
- "learning_rate": 8.786666666666668e-06,
133
- "loss": 0.0586,
134
- "step": 525
135
- },
136
- {
137
- "epoch": 1.09,
138
- "learning_rate": 8.675555555555556e-06,
139
- "loss": 0.0437,
140
- "step": 550
141
- },
142
- {
143
- "epoch": 1.1,
144
- "learning_rate": 8.564444444444445e-06,
145
- "loss": 0.0395,
146
- "step": 575
147
- },
148
- {
149
- "epoch": 1.11,
150
- "learning_rate": 8.453333333333334e-06,
151
- "loss": 0.0371,
152
- "step": 600
153
- },
154
- {
155
- "epoch": 1.12,
156
- "learning_rate": 8.342222222222222e-06,
157
- "loss": 0.0316,
158
- "step": 625
159
- },
160
- {
161
- "epoch": 2.01,
162
- "learning_rate": 8.231111111111112e-06,
163
- "loss": 0.0412,
164
- "step": 650
165
- },
166
- {
167
- "epoch": 2.02,
168
- "learning_rate": 8.120000000000002e-06,
169
- "loss": 0.0335,
170
- "step": 675
171
- },
172
- {
173
- "epoch": 2.03,
174
- "learning_rate": 8.00888888888889e-06,
175
- "loss": 0.0314,
176
- "step": 700
177
- },
178
- {
179
- "epoch": 2.04,
180
- "learning_rate": 7.897777777777778e-06,
181
- "loss": 0.0329,
182
- "step": 725
183
- },
184
- {
185
- "epoch": 2.05,
186
- "learning_rate": 7.786666666666666e-06,
187
- "loss": 0.0275,
188
- "step": 750
189
- },
190
- {
191
- "epoch": 2.06,
192
- "learning_rate": 7.675555555555556e-06,
193
- "loss": 0.028,
194
- "step": 775
195
- },
196
- {
197
- "epoch": 2.07,
198
- "learning_rate": 7.564444444444446e-06,
199
- "loss": 0.0256,
200
- "step": 800
201
- },
202
- {
203
- "epoch": 2.08,
204
- "learning_rate": 7.453333333333334e-06,
205
- "loss": 0.026,
206
- "step": 825
207
- },
208
- {
209
- "epoch": 2.09,
210
- "learning_rate": 7.342222222222223e-06,
211
- "loss": 0.0295,
212
- "step": 850
213
- },
214
- {
215
- "epoch": 2.1,
216
- "learning_rate": 7.231111111111112e-06,
217
- "loss": 0.0259,
218
- "step": 875
219
- },
220
- {
221
- "epoch": 2.11,
222
- "learning_rate": 7.1200000000000004e-06,
223
- "loss": 0.0173,
224
- "step": 900
225
- },
226
- {
227
- "epoch": 2.12,
228
- "learning_rate": 7.008888888888889e-06,
229
- "loss": 0.014,
230
- "step": 925
231
- },
232
- {
233
- "epoch": 3.0,
234
- "learning_rate": 6.897777777777779e-06,
235
- "loss": 0.0158,
236
- "step": 950
237
- },
238
- {
239
- "epoch": 3.01,
240
- "learning_rate": 6.786666666666667e-06,
241
- "loss": 0.0193,
242
- "step": 975
243
- },
244
- {
245
- "epoch": 3.02,
246
- "learning_rate": 6.675555555555556e-06,
247
- "loss": 0.0146,
248
- "step": 1000
249
- },
250
- {
251
- "epoch": 3.02,
252
- "eval_loss": 0.2546452581882477,
253
- "eval_runtime": 2882.0567,
254
- "eval_samples_per_second": 1.759,
255
- "eval_steps_per_second": 0.11,
256
- "eval_wer": 11.942264272658853,
257
- "step": 1000
258
- }
259
- ],
260
- "max_steps": 2500,
261
- "num_train_epochs": 9223372036854775807,
262
- "total_flos": 3.263486252285952e+19,
263
- "trial_name": null,
264
- "trial_params": null
265
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1000/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e13de8ddcc61da424ec8e8d050cd43e412a6f52aa9be94507835652edf1dedf
3
- size 3579
 
 
 
 
checkpoint-2000/config.json DELETED
@@ -1,41 +0,0 @@
1
- {
2
- "_name_or_path": "marinone94/whisper-medium-nordic",
3
- "activation_dropout": 0.0,
4
- "activation_function": "gelu",
5
- "architectures": [
6
- "WhisperForConditionalGeneration"
7
- ],
8
- "attention_dropout": 0.0,
9
- "begin_suppress_tokens": [
10
- 220,
11
- 50257
12
- ],
13
- "bos_token_id": 50257,
14
- "d_model": 1024,
15
- "decoder_attention_heads": 16,
16
- "decoder_ffn_dim": 4096,
17
- "decoder_layerdrop": 0.0,
18
- "decoder_layers": 24,
19
- "decoder_start_token_id": 50258,
20
- "dropout": 0.0,
21
- "encoder_attention_heads": 16,
22
- "encoder_ffn_dim": 4096,
23
- "encoder_layerdrop": 0.0,
24
- "encoder_layers": 24,
25
- "eos_token_id": 50257,
26
- "forced_decoder_ids": null,
27
- "init_std": 0.02,
28
- "is_encoder_decoder": true,
29
- "max_length": 448,
30
- "max_source_positions": 1500,
31
- "max_target_positions": 448,
32
- "model_type": "whisper",
33
- "num_hidden_layers": 24,
34
- "num_mel_bins": 80,
35
- "pad_token_id": 50257,
36
- "scale_embedding": false,
37
- "torch_dtype": "float32",
38
- "transformers_version": "4.26.0.dev0",
39
- "use_cache": false,
40
- "vocab_size": 51865
41
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-2000/optimizer.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:259711c4e6978872a098051416766fdc14fdd8fac16daedeb90809ff04b25acd
3
- size 6111428695
 
 
 
 
checkpoint-2000/preprocessor_config.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:523e5675a34a184a100528b8c77ec2ff6d5c5fddb30ef2d034ca8b7b1cdae7e6
3
- size 3055754841
 
 
 
 
checkpoint-2000/rng_state.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0ac7588e56b2f3605270c18191b85d12253a2aa8ac37011f5dd7ee58036e40c
3
- size 14575
 
 
 
 
checkpoint-2000/scaler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:93dcbb27405421069b5f31003e3f224646e375ff4c9d7ba4b0d265614f660d0f
3
- size 557
 
 
 
 
checkpoint-2000/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:37492482747b6e8c7f9b2ddf6b8c932454afa931831c235a6f136e9ca901a936
3
- size 627
 
 
 
 
checkpoint-2000/trainer_state.json DELETED
@@ -1,514 +0,0 @@
1
- {
2
- "best_metric": 11.37780883775938,
3
- "best_model_checkpoint": "./checkpoint-2000",
4
- "epoch": 6.0416,
5
- "global_step": 2000,
6
- "is_hyper_param_search": false,
7
- "is_local_process_zero": true,
8
- "is_world_process_zero": true,
9
- "log_history": [
10
- {
11
- "epoch": 0.01,
12
- "learning_rate": 9.200000000000001e-07,
13
- "loss": 0.5204,
14
- "step": 25
15
- },
16
- {
17
- "epoch": 0.02,
18
- "learning_rate": 1.9200000000000003e-06,
19
- "loss": 0.0582,
20
- "step": 50
21
- },
22
- {
23
- "epoch": 0.03,
24
- "learning_rate": 2.92e-06,
25
- "loss": 0.0527,
26
- "step": 75
27
- },
28
- {
29
- "epoch": 0.04,
30
- "learning_rate": 3.920000000000001e-06,
31
- "loss": 0.0587,
32
- "step": 100
33
- },
34
- {
35
- "epoch": 0.05,
36
- "learning_rate": 4.92e-06,
37
- "loss": 0.0659,
38
- "step": 125
39
- },
40
- {
41
- "epoch": 0.06,
42
- "learning_rate": 5.92e-06,
43
- "loss": 0.0681,
44
- "step": 150
45
- },
46
- {
47
- "epoch": 0.07,
48
- "learning_rate": 6.92e-06,
49
- "loss": 0.07,
50
- "step": 175
51
- },
52
- {
53
- "epoch": 0.08,
54
- "learning_rate": 7.92e-06,
55
- "loss": 0.0856,
56
- "step": 200
57
- },
58
- {
59
- "epoch": 0.09,
60
- "learning_rate": 8.920000000000001e-06,
61
- "loss": 0.0894,
62
- "step": 225
63
- },
64
- {
65
- "epoch": 0.1,
66
- "learning_rate": 9.920000000000002e-06,
67
- "loss": 0.0751,
68
- "step": 250
69
- },
70
- {
71
- "epoch": 0.11,
72
- "learning_rate": 9.89777777777778e-06,
73
- "loss": 0.0772,
74
- "step": 275
75
- },
76
- {
77
- "epoch": 0.12,
78
- "learning_rate": 9.786666666666667e-06,
79
- "loss": 0.0698,
80
- "step": 300
81
- },
82
- {
83
- "epoch": 1.0,
84
- "learning_rate": 9.675555555555555e-06,
85
- "loss": 0.0893,
86
- "step": 325
87
- },
88
- {
89
- "epoch": 1.01,
90
- "learning_rate": 9.564444444444445e-06,
91
- "loss": 0.0782,
92
- "step": 350
93
- },
94
- {
95
- "epoch": 1.02,
96
- "learning_rate": 9.453333333333335e-06,
97
- "loss": 0.0595,
98
- "step": 375
99
- },
100
- {
101
- "epoch": 1.03,
102
- "learning_rate": 9.342222222222223e-06,
103
- "loss": 0.0537,
104
- "step": 400
105
- },
106
- {
107
- "epoch": 1.04,
108
- "learning_rate": 9.231111111111111e-06,
109
- "loss": 0.052,
110
- "step": 425
111
- },
112
- {
113
- "epoch": 1.05,
114
- "learning_rate": 9.12e-06,
115
- "loss": 0.05,
116
- "step": 450
117
- },
118
- {
119
- "epoch": 1.06,
120
- "learning_rate": 9.008888888888889e-06,
121
- "loss": 0.0522,
122
- "step": 475
123
- },
124
- {
125
- "epoch": 1.07,
126
- "learning_rate": 8.897777777777779e-06,
127
- "loss": 0.0467,
128
- "step": 500
129
- },
130
- {
131
- "epoch": 1.08,
132
- "learning_rate": 8.786666666666668e-06,
133
- "loss": 0.0586,
134
- "step": 525
135
- },
136
- {
137
- "epoch": 1.09,
138
- "learning_rate": 8.675555555555556e-06,
139
- "loss": 0.0437,
140
- "step": 550
141
- },
142
- {
143
- "epoch": 1.1,
144
- "learning_rate": 8.564444444444445e-06,
145
- "loss": 0.0395,
146
- "step": 575
147
- },
148
- {
149
- "epoch": 1.11,
150
- "learning_rate": 8.453333333333334e-06,
151
- "loss": 0.0371,
152
- "step": 600
153
- },
154
- {
155
- "epoch": 1.12,
156
- "learning_rate": 8.342222222222222e-06,
157
- "loss": 0.0316,
158
- "step": 625
159
- },
160
- {
161
- "epoch": 2.01,
162
- "learning_rate": 8.231111111111112e-06,
163
- "loss": 0.0412,
164
- "step": 650
165
- },
166
- {
167
- "epoch": 2.02,
168
- "learning_rate": 8.120000000000002e-06,
169
- "loss": 0.0335,
170
- "step": 675
171
- },
172
- {
173
- "epoch": 2.03,
174
- "learning_rate": 8.00888888888889e-06,
175
- "loss": 0.0314,
176
- "step": 700
177
- },
178
- {
179
- "epoch": 2.04,
180
- "learning_rate": 7.897777777777778e-06,
181
- "loss": 0.0329,
182
- "step": 725
183
- },
184
- {
185
- "epoch": 2.05,
186
- "learning_rate": 7.786666666666666e-06,
187
- "loss": 0.0275,
188
- "step": 750
189
- },
190
- {
191
- "epoch": 2.06,
192
- "learning_rate": 7.675555555555556e-06,
193
- "loss": 0.028,
194
- "step": 775
195
- },
196
- {
197
- "epoch": 2.07,
198
- "learning_rate": 7.564444444444446e-06,
199
- "loss": 0.0256,
200
- "step": 800
201
- },
202
- {
203
- "epoch": 2.08,
204
- "learning_rate": 7.453333333333334e-06,
205
- "loss": 0.026,
206
- "step": 825
207
- },
208
- {
209
- "epoch": 2.09,
210
- "learning_rate": 7.342222222222223e-06,
211
- "loss": 0.0295,
212
- "step": 850
213
- },
214
- {
215
- "epoch": 2.1,
216
- "learning_rate": 7.231111111111112e-06,
217
- "loss": 0.0259,
218
- "step": 875
219
- },
220
- {
221
- "epoch": 2.11,
222
- "learning_rate": 7.1200000000000004e-06,
223
- "loss": 0.0173,
224
- "step": 900
225
- },
226
- {
227
- "epoch": 2.12,
228
- "learning_rate": 7.008888888888889e-06,
229
- "loss": 0.014,
230
- "step": 925
231
- },
232
- {
233
- "epoch": 3.0,
234
- "learning_rate": 6.897777777777779e-06,
235
- "loss": 0.0158,
236
- "step": 950
237
- },
238
- {
239
- "epoch": 3.01,
240
- "learning_rate": 6.786666666666667e-06,
241
- "loss": 0.0193,
242
- "step": 975
243
- },
244
- {
245
- "epoch": 3.02,
246
- "learning_rate": 6.675555555555556e-06,
247
- "loss": 0.0146,
248
- "step": 1000
249
- },
250
- {
251
- "epoch": 3.02,
252
- "eval_loss": 0.2546452581882477,
253
- "eval_runtime": 2882.0567,
254
- "eval_samples_per_second": 1.759,
255
- "eval_steps_per_second": 0.11,
256
- "eval_wer": 11.942264272658853,
257
- "step": 1000
258
- },
259
- {
260
- "epoch": 3.03,
261
- "learning_rate": 6.564444444444446e-06,
262
- "loss": 0.0129,
263
- "step": 1025
264
- },
265
- {
266
- "epoch": 3.04,
267
- "learning_rate": 6.453333333333334e-06,
268
- "loss": 0.0111,
269
- "step": 1050
270
- },
271
- {
272
- "epoch": 3.05,
273
- "learning_rate": 6.342222222222223e-06,
274
- "loss": 0.0143,
275
- "step": 1075
276
- },
277
- {
278
- "epoch": 3.06,
279
- "learning_rate": 6.231111111111111e-06,
280
- "loss": 0.0128,
281
- "step": 1100
282
- },
283
- {
284
- "epoch": 3.07,
285
- "learning_rate": 6.120000000000001e-06,
286
- "loss": 0.0105,
287
- "step": 1125
288
- },
289
- {
290
- "epoch": 3.08,
291
- "learning_rate": 6.00888888888889e-06,
292
- "loss": 0.012,
293
- "step": 1150
294
- },
295
- {
296
- "epoch": 3.09,
297
- "learning_rate": 5.897777777777778e-06,
298
- "loss": 0.0133,
299
- "step": 1175
300
- },
301
- {
302
- "epoch": 3.1,
303
- "learning_rate": 5.7866666666666674e-06,
304
- "loss": 0.0093,
305
- "step": 1200
306
- },
307
- {
308
- "epoch": 3.11,
309
- "learning_rate": 5.675555555555556e-06,
310
- "loss": 0.0097,
311
- "step": 1225
312
- },
313
- {
314
- "epoch": 3.12,
315
- "learning_rate": 5.5644444444444444e-06,
316
- "loss": 0.007,
317
- "step": 1250
318
- },
319
- {
320
- "epoch": 4.0,
321
- "learning_rate": 5.453333333333334e-06,
322
- "loss": 0.0059,
323
- "step": 1275
324
- },
325
- {
326
- "epoch": 4.01,
327
- "learning_rate": 5.342222222222223e-06,
328
- "loss": 0.01,
329
- "step": 1300
330
- },
331
- {
332
- "epoch": 4.02,
333
- "learning_rate": 5.231111111111111e-06,
334
- "loss": 0.0086,
335
- "step": 1325
336
- },
337
- {
338
- "epoch": 4.03,
339
- "learning_rate": 5.12e-06,
340
- "loss": 0.0048,
341
- "step": 1350
342
- },
343
- {
344
- "epoch": 4.04,
345
- "learning_rate": 5.00888888888889e-06,
346
- "loss": 0.0058,
347
- "step": 1375
348
- },
349
- {
350
- "epoch": 4.05,
351
- "learning_rate": 4.897777777777778e-06,
352
- "loss": 0.0056,
353
- "step": 1400
354
- },
355
- {
356
- "epoch": 4.06,
357
- "learning_rate": 4.786666666666667e-06,
358
- "loss": 0.0059,
359
- "step": 1425
360
- },
361
- {
362
- "epoch": 4.07,
363
- "learning_rate": 4.675555555555556e-06,
364
- "loss": 0.0038,
365
- "step": 1450
366
- },
367
- {
368
- "epoch": 4.08,
369
- "learning_rate": 4.564444444444445e-06,
370
- "loss": 0.0049,
371
- "step": 1475
372
- },
373
- {
374
- "epoch": 4.09,
375
- "learning_rate": 4.453333333333334e-06,
376
- "loss": 0.0051,
377
- "step": 1500
378
- },
379
- {
380
- "epoch": 4.1,
381
- "learning_rate": 4.3422222222222225e-06,
382
- "loss": 0.0044,
383
- "step": 1525
384
- },
385
- {
386
- "epoch": 4.11,
387
- "learning_rate": 4.2311111111111114e-06,
388
- "loss": 0.0026,
389
- "step": 1550
390
- },
391
- {
392
- "epoch": 4.12,
393
- "learning_rate": 4.12e-06,
394
- "loss": 0.0036,
395
- "step": 1575
396
- },
397
- {
398
- "epoch": 5.01,
399
- "learning_rate": 4.008888888888889e-06,
400
- "loss": 0.0035,
401
- "step": 1600
402
- },
403
- {
404
- "epoch": 5.02,
405
- "learning_rate": 3.897777777777778e-06,
406
- "loss": 0.0024,
407
- "step": 1625
408
- },
409
- {
410
- "epoch": 5.03,
411
- "learning_rate": 3.7866666666666667e-06,
412
- "loss": 0.0026,
413
- "step": 1650
414
- },
415
- {
416
- "epoch": 5.04,
417
- "learning_rate": 3.675555555555556e-06,
418
- "loss": 0.0031,
419
- "step": 1675
420
- },
421
- {
422
- "epoch": 5.05,
423
- "learning_rate": 3.564444444444445e-06,
424
- "loss": 0.0045,
425
- "step": 1700
426
- },
427
- {
428
- "epoch": 5.06,
429
- "learning_rate": 3.4533333333333334e-06,
430
- "loss": 0.0019,
431
- "step": 1725
432
- },
433
- {
434
- "epoch": 5.07,
435
- "learning_rate": 3.3422222222222224e-06,
436
- "loss": 0.0018,
437
- "step": 1750
438
- },
439
- {
440
- "epoch": 5.08,
441
- "learning_rate": 3.2311111111111117e-06,
442
- "loss": 0.0033,
443
- "step": 1775
444
- },
445
- {
446
- "epoch": 5.09,
447
- "learning_rate": 3.12e-06,
448
- "loss": 0.0048,
449
- "step": 1800
450
- },
451
- {
452
- "epoch": 5.1,
453
- "learning_rate": 3.008888888888889e-06,
454
- "loss": 0.0019,
455
- "step": 1825
456
- },
457
- {
458
- "epoch": 5.11,
459
- "learning_rate": 2.8977777777777785e-06,
460
- "loss": 0.0015,
461
- "step": 1850
462
- },
463
- {
464
- "epoch": 5.12,
465
- "learning_rate": 2.786666666666667e-06,
466
- "loss": 0.0018,
467
- "step": 1875
468
- },
469
- {
470
- "epoch": 6.0,
471
- "learning_rate": 2.675555555555556e-06,
472
- "loss": 0.0017,
473
- "step": 1900
474
- },
475
- {
476
- "epoch": 6.01,
477
- "learning_rate": 2.5644444444444444e-06,
478
- "loss": 0.0017,
479
- "step": 1925
480
- },
481
- {
482
- "epoch": 6.02,
483
- "learning_rate": 2.4533333333333333e-06,
484
- "loss": 0.0009,
485
- "step": 1950
486
- },
487
- {
488
- "epoch": 6.03,
489
- "learning_rate": 2.342222222222222e-06,
490
- "loss": 0.0011,
491
- "step": 1975
492
- },
493
- {
494
- "epoch": 6.04,
495
- "learning_rate": 2.2311111111111115e-06,
496
- "loss": 0.0017,
497
- "step": 2000
498
- },
499
- {
500
- "epoch": 6.04,
501
- "eval_loss": 0.29696929454803467,
502
- "eval_runtime": 2899.6818,
503
- "eval_samples_per_second": 1.748,
504
- "eval_steps_per_second": 0.109,
505
- "eval_wer": 11.37780883775938,
506
- "step": 2000
507
- }
508
- ],
509
- "max_steps": 2500,
510
- "num_train_epochs": 9223372036854775807,
511
- "total_flos": 6.526972504571904e+19,
512
- "trial_name": null,
513
- "trial_params": null
514
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-2000/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e13de8ddcc61da424ec8e8d050cd43e412a6f52aa9be94507835652edf1dedf
3
- size 3579
 
 
 
 
eval_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 7.12,
3
- "eval_loss": 0.29696929454803467,
4
- "eval_runtime": 2902.1488,
5
- "eval_samples_per_second": 1.747,
6
- "eval_steps_per_second": 0.109,
7
- "eval_wer": 11.37780883775938
8
  }
 
1
  {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.24834245443344116,
4
+ "eval_runtime": 2999.4256,
5
+ "eval_samples_per_second": 1.69,
6
+ "eval_steps_per_second": 0.106,
7
+ "eval_wer": 9.891409525857435
8
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:523e5675a34a184a100528b8c77ec2ff6d5c5fddb30ef2d034ca8b7b1cdae7e6
3
  size 3055754841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce7f783491edc671deb55f5ce6701ebc753df5b565204547bdda4e4c24df4477
3
  size 3055754841
run.sh CHANGED
@@ -1,12 +1,14 @@
1
  python run_speech_recognition_seq2seq_streaming.py \
2
  --model_name_or_path="marinone94/whisper-medium-nordic" \
3
- --dataset_name="mozilla-foundation/common_voice_11_0" \
4
- --dataset_config_name="sv-SE" \
5
  --language="swedish" \
6
- --train_split_name="train+validation" \
 
 
7
  --eval_split_name="test" \
8
  --model_index_name="Whisper Medium Swedish" \
9
- --max_steps="2500" \
10
  --output_dir="./" \
11
  --per_device_train_batch_size="32" \
12
  --per_device_eval_batch_size="16" \
@@ -20,19 +22,15 @@ python run_speech_recognition_seq2seq_streaming.py \
20
  --generation_max_length="225" \
21
  --length_column_name="input_length" \
22
  --max_duration_in_seconds="30" \
23
- --text_column_name="sentence" \
24
  --freeze_feature_encoder="False" \
25
- --report_to="tensorboard" \
26
  --metric_for_best_model="wer" \
27
  --greater_is_better="False" \
28
  --load_best_model_at_end \
29
  --gradient_checkpointing \
30
  --fp16 \
31
- --overwrite_output_dir \
32
- --do_train \
33
- --do_eval \
34
  --predict_with_generate \
35
  --do_normalize_eval \
36
  --streaming \
37
- --use_auth_token \
38
- --push_to_hub
 
1
  python run_speech_recognition_seq2seq_streaming.py \
2
  --model_name_or_path="marinone94/whisper-medium-nordic" \
3
+ --dataset_train_name="mozilla-foundation/common_voice_11_0,babelbox/babelbox_voice,google/fleurs" \
4
+ --dataset_train_config_name="sv-SE,nst,sv_se" \
5
  --language="swedish" \
6
+ --train_split_name="train+validation,train,train+validation+test" \
7
+ --dataset_eval_name="mozilla-foundation/common_voice_11_0" \
8
+ --dataset_eval_config_name="sv-SE" \
9
  --eval_split_name="test" \
10
  --model_index_name="Whisper Medium Swedish" \
11
+ --max_steps="5000" \
12
  --output_dir="./" \
13
  --per_device_train_batch_size="32" \
14
  --per_device_eval_batch_size="16" \
 
22
  --generation_max_length="225" \
23
  --length_column_name="input_length" \
24
  --max_duration_in_seconds="30" \
25
+ --text_column_name="sentence,raw_transcription" \
26
  --freeze_feature_encoder="False" \
27
+ --report_to="wandb" \
28
  --metric_for_best_model="wer" \
29
  --greater_is_better="False" \
30
  --load_best_model_at_end \
31
  --gradient_checkpointing \
32
  --fp16 \
 
 
 
33
  --predict_with_generate \
34
  --do_normalize_eval \
35
  --streaming \
36
+ --use_auth_token
 
run_speech_recognition_seq2seq_streaming.py CHANGED
@@ -20,6 +20,7 @@ with 🤗 Datasets' streaming mode.
20
  # You can also adapt this script for your own sequence to sequence speech
21
  # recognition task. Pointers for this are left as comments.
22
 
 
23
  import logging
24
  import os
25
  import sys
@@ -28,6 +29,7 @@ from typing import Any, Dict, List, Optional, Union
28
 
29
  import datasets
30
  import torch
 
31
  from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
32
  from torch.utils.data import IterableDataset
33
 
@@ -60,6 +62,42 @@ require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/spe
60
  logger = logging.getLogger(__name__)
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  @dataclass
64
  class ModelArguments:
65
  """
@@ -127,10 +165,16 @@ class DataTrainingArguments:
127
  Arguments pertaining to what data we are going to input our model for training and eval.
128
  """
129
 
130
- dataset_name: str = field(
 
 
 
 
 
 
131
  default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
132
  )
133
- dataset_config_name: Optional[str] = field(
134
  default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
135
  )
136
  text_column: Optional[str] = field(
@@ -265,27 +309,131 @@ class DataCollatorSpeechSeq2SeqWithPadding:
265
  return batch
266
 
267
 
268
- def load_maybe_streaming_dataset(dataset_name, dataset_config_name, split="train", streaming=True, **kwargs):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  """
270
  Utility function to load a dataset in streaming mode. For datasets with multiple splits,
271
  each split is loaded individually and then splits combined by taking alternating examples from
272
  each (interleaving).
273
  """
274
- if "+" in split:
 
 
 
 
 
275
  # load multiple splits separated by the `+` symbol with streaming mode
276
- dataset_splits = [
277
- load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs)
278
- for split_name in split.split("+")
279
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
  # interleave multiple splits to form one dataset
281
- interleaved_dataset = interleave_datasets(dataset_splits)
282
  return interleaved_dataset
283
  else:
284
  # load a single split *with* streaming mode
285
- dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=streaming, **kwargs)
 
 
 
 
 
 
 
 
 
286
  return dataset
287
 
288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
  def main():
290
  # 1. Parse input arguments
291
  # See all possible arguments in src/transformers/training_args.py
@@ -349,39 +497,55 @@ def main():
349
  # Set seed before initializing model.
350
  set_seed(training_args.seed)
351
 
 
 
 
 
 
 
 
 
352
  # 4. Load dataset
353
  raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
354
 
355
  if training_args.do_train:
356
  raw_datasets["train"] = load_maybe_streaming_dataset(
357
- data_args.dataset_name,
358
- data_args.dataset_config_name,
359
  split=data_args.train_split_name,
360
- use_auth_token=True if model_args.use_auth_token else None,
361
  streaming=data_args.streaming,
 
 
 
 
362
  )
363
 
364
  if training_args.do_eval:
365
  raw_datasets["eval"] = load_maybe_streaming_dataset(
366
- data_args.dataset_name,
367
- data_args.dataset_config_name,
368
  split=data_args.eval_split_name,
369
- use_auth_token=True if model_args.use_auth_token else None,
370
  streaming=data_args.streaming,
 
 
 
 
371
  )
372
 
373
  raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
374
-
375
  if data_args.audio_column_name not in raw_datasets_features:
376
  raise ValueError(
377
- f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
378
  "Make sure to set `--audio_column_name` to the correct audio column - one of "
379
  f"{', '.join(raw_datasets_features)}."
380
  )
381
 
382
- if data_args.text_column_name not in raw_datasets_features:
383
  raise ValueError(
384
- f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
385
  "Make sure to set `--text_column_name` to the correct text column - one of "
386
  f"{', '.join(raw_datasets_features)}."
387
  )
@@ -394,7 +558,7 @@ def main():
394
  model_args.config_name if model_args.config_name else model_args.model_name_or_path,
395
  cache_dir=model_args.cache_dir,
396
  revision=model_args.model_revision,
397
- use_auth_token=True if model_args.use_auth_token else None,
398
  )
399
 
400
  config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
@@ -402,25 +566,19 @@ def main():
402
  if training_args.gradient_checkpointing:
403
  config.update({"use_cache": False})
404
 
405
- feature_extractor = AutoFeatureExtractor.from_pretrained(
406
- model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
407
- cache_dir=model_args.cache_dir,
408
- revision=model_args.model_revision,
409
- use_auth_token=True if model_args.use_auth_token else None,
410
- )
411
  tokenizer = AutoTokenizer.from_pretrained(
412
  model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
413
  cache_dir=model_args.cache_dir,
414
  use_fast=model_args.use_fast_tokenizer,
415
  revision=model_args.model_revision,
416
- use_auth_token=True if model_args.use_auth_token else None,
417
  )
418
  model = AutoModelForSpeechSeq2Seq.from_pretrained(
419
  model_args.model_name_or_path,
420
  config=config,
421
  cache_dir=model_args.cache_dir,
422
  revision=model_args.model_revision,
423
- use_auth_token=True if model_args.use_auth_token else None,
424
  )
425
 
426
  if model.config.decoder_start_token_id is None:
@@ -448,7 +606,6 @@ def main():
448
  max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
449
  min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
450
  audio_column_name = data_args.audio_column_name
451
- text_column_name = data_args.text_column_name
452
  model_input_name = feature_extractor.model_input_names[0]
453
  do_lower_case = data_args.do_lower_case
454
  do_remove_punctuation = data_args.do_remove_punctuation
@@ -568,6 +725,9 @@ def main():
568
  callbacks=[ShuffleCallback()] if data_args.streaming else None,
569
  )
570
 
 
 
 
571
  # 12. Training
572
  if training_args.do_train:
573
  checkpoint = None
@@ -606,24 +766,43 @@ def main():
606
  "tasks": "automatic-speech-recognition",
607
  "tags": "whisper-event",
608
  }
609
- if data_args.dataset_name is not None:
610
- kwargs["dataset_tags"] = data_args.dataset_name
611
- if data_args.dataset_config_name is not None:
612
- kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
613
  else:
614
- kwargs["dataset"] = data_args.dataset_name
615
- if "common_voice" in data_args.dataset_name:
616
- kwargs["language"] = data_args.dataset_config_name[:2]
617
  if model_args.model_index_name is not None:
618
  kwargs["model_name"] = model_args.model_index_name
619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620
  if training_args.push_to_hub:
621
  trainer.push_to_hub(**kwargs)
622
  else:
623
  trainer.create_model_card(**kwargs)
 
 
 
 
 
624
 
625
  return results
626
 
627
 
628
  if __name__ == "__main__":
629
- main()
 
20
  # You can also adapt this script for your own sequence to sequence speech
21
  # recognition task. Pointers for this are left as comments.
22
 
23
+ import json
24
  import logging
25
  import os
26
  import sys
 
29
 
30
  import datasets
31
  import torch
32
+ import wandb
33
  from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
34
  from torch.utils.data import IterableDataset
35
 
 
62
  logger = logging.getLogger(__name__)
63
 
64
 
65
+ SENDING_NOTIFICATION = "*** Sending notification to email ***"
66
+ RECIPIENT_ADDRESS = "[email protected]"
67
+
68
+ wandb_token = os.environ.get("WANDB_TOKEN", "None")
69
+ hf_token = os.environ.get("HF_TOKEN", None)
70
+ if (hf_token is None or wandb_token == "None") and os.path.exists("./creds.txt"):
71
+ with open("./creds.txt", "r") as f:
72
+ lines = f.readlines()
73
+ for line in lines:
74
+ key, value = line.split("=")
75
+ if key == "HF_TOKEN":
76
+ hf_token = value.strip()
77
+ if key == "WANDB_TOKEN":
78
+ wandb_token = value.strip()
79
+ if key == "EMAIL_ADDRESS":
80
+ os.environ["EMAIL_ADDRESS"] = value.strip()
81
+ if key == "EMAIL_PASSWORD":
82
+ os.environ["EMAIL_PASSWORD"] = value.strip()
83
+
84
+ if hf_token is not None:
85
+ try:
86
+ os.makedirs("/root/.huggingface", exist_ok=True)
87
+ with open("/root/.huggingface/token", "w") as f:
88
+ f.write(hf_token)
89
+ logger.info("Huggingface API key set")
90
+ except (PermissionError, OSError):
91
+ logger.warning("Huggingface API key not set, relying on ~/.huggingface/token")
92
+ else:
93
+ logger.warning("Huggingface API key not set, relying on ~/.huggingface/token")
94
+
95
+ wandb.login(key=wandb_token, relogin=True, timeout=5)
96
+ wandb.init(project="whisper", entity="pn-aa")
97
+
98
+ logger.info("Wandb API key set, logging to wandb")
99
+
100
+
101
  @dataclass
102
  class ModelArguments:
103
  """
 
165
  Arguments pertaining to what data we are going to input our model for training and eval.
166
  """
167
 
168
+ dataset_train_name: str = field(
169
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
170
+ )
171
+ dataset_train_config_name: Optional[str] = field(
172
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
173
+ )
174
+ dataset_eval_name: str = field(
175
  default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
176
  )
177
+ dataset_eval_config_name: Optional[str] = field(
178
  default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
179
  )
180
  text_column: Optional[str] = field(
 
309
  return batch
310
 
311
 
312
+ def rename_col_and_resample(dataset, dataset_name, text_column_names, text_col_name_ref, audio_column_name, sampling_rate):
313
+ raw_datasets_features = list(dataset.features.keys())
314
+ logger.info(f"Dataset {dataset_name} - Features: {raw_datasets_features}")
315
+
316
+ if text_col_name_ref not in raw_datasets_features:
317
+ if len(text_column_names) == 1:
318
+ raise ValueError("None of the text column names provided found in dataset."
319
+ f"Text columns: {text_column_names}"
320
+ f"Dataset columns: {raw_datasets_features}")
321
+ flag = False
322
+ for text_column_name in text_column_names:
323
+ if text_column_name in raw_datasets_features:
324
+ logger.info(f"Renaming text column {text_column_name} to {text_col_name_ref}")
325
+ dataset = dataset.rename_column(text_column_name, text_col_name_ref)
326
+ flag = True
327
+ break
328
+ if flag is False:
329
+ raise ValueError("None of the text column names provided found in dataset."
330
+ f"Text columns: {text_column_names}"
331
+ f"Dataset columns: {raw_datasets_features}")
332
+ if audio_column_name is not None and sampling_rate is not None:
333
+ ds_sr = int(dataset.features[audio_column_name].sampling_rate)
334
+ if ds_sr != sampling_rate:
335
+ dataset = dataset.cast_column(
336
+ audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)
337
+ )
338
+
339
+ raw_datasets_features = list(dataset.features.keys())
340
+ raw_datasets_features.remove(audio_column_name)
341
+ raw_datasets_features.remove(text_col_name_ref)
342
+ # Keep only audio and sentence
343
+ dataset = dataset.remove_columns(column_names=raw_datasets_features)
344
+ return dataset
345
+
346
+
347
+ def load_maybe_streaming_dataset(
348
+ dataset_names,
349
+ dataset_config_names,
350
+ split="train",
351
+ streaming=True,
352
+ audio_column_name=None,
353
+ sampling_rate=None,
354
+ **kwargs
355
+ ):
356
  """
357
  Utility function to load a dataset in streaming mode. For datasets with multiple splits,
358
  each split is loaded individually and then splits combined by taking alternating examples from
359
  each (interleaving).
360
  """
361
+ text_column_names = None
362
+ if "text_column_name" in kwargs:
363
+ text_column_names = kwargs.pop("text_column_name").split(",")
364
+ text_col_name_ref = text_column_names[0]
365
+
366
+ if "," in dataset_names or "+" in split:
367
  # load multiple splits separated by the `+` symbol with streaming mode
368
+ dataset_splits = []
369
+ for dataset_name, dataset_config_name, split_names in zip(
370
+ dataset_names.split(","), dataset_config_names.split(","), split.split(",")
371
+ ):
372
+ for split_name in split_names.split("+"):
373
+ if dataset_config_name:
374
+ dataset = load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs)
375
+ else:
376
+ dataset = load_dataset(dataset_name, split=split_name, streaming=streaming, **kwargs)
377
+
378
+ dataset = rename_col_and_resample(
379
+ dataset,
380
+ dataset_name,
381
+ text_column_names,
382
+ text_col_name_ref,
383
+ audio_column_name,
384
+ sampling_rate
385
+ )
386
+
387
+ dataset_splits.append(dataset)
388
+
389
  # interleave multiple splits to form one dataset
390
+ interleaved_dataset = interleave_datasets(dataset_splits, stopping_strategy="all_exhausted")
391
  return interleaved_dataset
392
  else:
393
  # load a single split *with* streaming mode
394
+
395
+ dataset = load_dataset(dataset_names, dataset_config_names, split=split, streaming=streaming, **kwargs)
396
+ dataset = rename_col_and_resample(
397
+ dataset,
398
+ dataset_names,
399
+ text_column_names,
400
+ text_col_name_ref,
401
+ audio_column_name,
402
+ sampling_rate
403
+ )
404
  return dataset
405
 
406
 
407
+ def notify_me(recipient, message=None):
408
+ """
409
+ Send an email to the specified address with the specified message
410
+ """
411
+ sender = os.environ.get("EMAIL_ADDRESS", None)
412
+ password = os.environ.get("EMAIL_PASSWORD", None)
413
+ if sender is None:
414
+ logging.warning("No email address specified, not sending notification")
415
+ if password is None:
416
+ logging.warning("No email password specified, not sending notification")
417
+ if message is None:
418
+ message = "Training is finished!"
419
+
420
+ if sender is not None:
421
+ import smtplib
422
+ from email.mime.text import MIMEText
423
+
424
+ msg = MIMEText(message)
425
+ msg["Subject"] = "Training updates..."
426
+ msg["From"] = "[email protected]"
427
+ msg["To"] = recipient
428
+
429
+ # send the email
430
+ smtp_obj = smtplib.SMTP("smtp.gmail.com", 587)
431
+ smtp_obj.starttls()
432
+ smtp_obj.login(sender, password)
433
+ smtp_obj.sendmail(sender, recipient, msg.as_string())
434
+ smtp_obj.quit()
435
+
436
+
437
  def main():
438
  # 1. Parse input arguments
439
  # See all possible arguments in src/transformers/training_args.py
 
497
  # Set seed before initializing model.
498
  set_seed(training_args.seed)
499
 
500
+ # Load feature extractor
501
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
502
+ model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
503
+ cache_dir=model_args.cache_dir,
504
+ revision=model_args.model_revision,
505
+ use_auth_token=hf_token if model_args.use_auth_token else None,
506
+ )
507
+
508
  # 4. Load dataset
509
  raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
510
 
511
  if training_args.do_train:
512
  raw_datasets["train"] = load_maybe_streaming_dataset(
513
+ data_args.dataset_train_name,
514
+ data_args.dataset_train_config_name,
515
  split=data_args.train_split_name,
516
+ use_auth_token=hf_token if model_args.use_auth_token else None,
517
  streaming=data_args.streaming,
518
+ text_column_name=data_args.text_column_name,
519
+ audio_column_name=data_args.audio_column_name,
520
+ sampling_rate=int(feature_extractor.sampling_rate),
521
+ # language=data_args.language_train
522
  )
523
 
524
  if training_args.do_eval:
525
  raw_datasets["eval"] = load_maybe_streaming_dataset(
526
+ data_args.dataset_eval_name,
527
+ data_args.dataset_eval_config_name,
528
  split=data_args.eval_split_name,
529
+ use_auth_token=hf_token if model_args.use_auth_token else None,
530
  streaming=data_args.streaming,
531
+ text_column_name=data_args.text_column_name,
532
+ audio_column_name=data_args.audio_column_name,
533
+ sampling_rate=int(feature_extractor.sampling_rate),
534
+ # language=data_args.language_eval
535
  )
536
 
537
  raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
538
+ text_column_name = data_args.text_column_name.split(",")[0]
539
  if data_args.audio_column_name not in raw_datasets_features:
540
  raise ValueError(
541
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_train_name}'. "
542
  "Make sure to set `--audio_column_name` to the correct audio column - one of "
543
  f"{', '.join(raw_datasets_features)}."
544
  )
545
 
546
+ if text_column_name not in raw_datasets_features:
547
  raise ValueError(
548
+ f"--text_column_name {text_column_name} not found in dataset '{data_args.dataset_train_name}'. "
549
  "Make sure to set `--text_column_name` to the correct text column - one of "
550
  f"{', '.join(raw_datasets_features)}."
551
  )
 
558
  model_args.config_name if model_args.config_name else model_args.model_name_or_path,
559
  cache_dir=model_args.cache_dir,
560
  revision=model_args.model_revision,
561
+ use_auth_token=hf_token if model_args.use_auth_token else None,
562
  )
563
 
564
  config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
 
566
  if training_args.gradient_checkpointing:
567
  config.update({"use_cache": False})
568
 
 
 
 
 
 
 
569
  tokenizer = AutoTokenizer.from_pretrained(
570
  model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
571
  cache_dir=model_args.cache_dir,
572
  use_fast=model_args.use_fast_tokenizer,
573
  revision=model_args.model_revision,
574
+ use_auth_token=hf_token if model_args.use_auth_token else None,
575
  )
576
  model = AutoModelForSpeechSeq2Seq.from_pretrained(
577
  model_args.model_name_or_path,
578
  config=config,
579
  cache_dir=model_args.cache_dir,
580
  revision=model_args.model_revision,
581
+ use_auth_token=hf_token if model_args.use_auth_token else None,
582
  )
583
 
584
  if model.config.decoder_start_token_id is None:
 
606
  max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
607
  min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
608
  audio_column_name = data_args.audio_column_name
 
609
  model_input_name = feature_extractor.model_input_names[0]
610
  do_lower_case = data_args.do_lower_case
611
  do_remove_punctuation = data_args.do_remove_punctuation
 
725
  callbacks=[ShuffleCallback()] if data_args.streaming else None,
726
  )
727
 
728
+ orig_push_to_hub = trainer.args.push_to_hub
729
+ trainer.args.push_to_hub = False
730
+
731
  # 12. Training
732
  if training_args.do_train:
733
  checkpoint = None
 
766
  "tasks": "automatic-speech-recognition",
767
  "tags": "whisper-event",
768
  }
769
+ if data_args.dataset_train_name is not None:
770
+ kwargs["dataset_tags"] = data_args.dataset_train_name
771
+ if data_args.dataset_train_config_name is not None:
772
+ kwargs["dataset"] = f"{data_args.dataset_train_name} {data_args.dataset_train_config_name}"
773
  else:
774
+ kwargs["dataset"] = data_args.dataset_train_name
775
+ if "common_voice" in data_args.dataset_train_name:
776
+ kwargs["language"] = data_args.dataset_train_config_name[:2]
777
  if model_args.model_index_name is not None:
778
  kwargs["model_name"] = model_args.model_index_name
779
 
780
+ logger.info("*** Training stats written ***")
781
+ logger.info(json.dumps(kwargs, indent=4))
782
+
783
+ # Training complete notification
784
+ logger.info("*** Training and eval complete ***")
785
+ logger.info(SENDING_NOTIFICATION)
786
+ with open(os.path.join(training_args.output_dir, "train_results.json"), "r") as f:
787
+ train_results = json.load(f)
788
+ with open(os.path.join(training_args.output_dir, "eval_results.json"), "r") as f:
789
+ eval_results = json.load(f)
790
+ notify_me(recipient=RECIPIENT_ADDRESS,
791
+ message=f"Training complete! {train_results = } {eval_results = }")
792
+
793
+ trainer.args.push_to_hub = orig_push_to_hub
794
  if training_args.push_to_hub:
795
  trainer.push_to_hub(**kwargs)
796
  else:
797
  trainer.create_model_card(**kwargs)
798
+
799
+ with open(os.path.join(training_args.output_dir, "README.md"), "r") as f:
800
+ readme = f.read()
801
+ notify_me(recipient=RECIPIENT_ADDRESS,
802
+ message=f"Model pushed to hub! {readme = }")
803
 
804
  return results
805
 
806
 
807
  if __name__ == "__main__":
808
+ main()
train_results.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "epoch": 7.12,
3
- "train_loss": 0.026056346493959427,
4
- "train_runtime": 20075.1792,
5
- "train_samples_per_second": 3.985,
6
- "train_steps_per_second": 0.125
7
  }
 
1
  {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.025400285175442697,
4
+ "train_runtime": 51804.3597,
5
+ "train_samples_per_second": 3.089,
6
+ "train_steps_per_second": 0.097
7
  }
trainer_state.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "best_metric": 11.37780883775938,
3
- "best_model_checkpoint": "./checkpoint-2000",
4
- "epoch": 7.1152,
5
- "global_step": 2500,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
@@ -10,634 +10,1261 @@
10
  {
11
  "epoch": 0.01,
12
  "learning_rate": 9.200000000000001e-07,
13
- "loss": 0.5204,
14
  "step": 25
15
  },
16
  {
17
- "epoch": 0.02,
18
  "learning_rate": 1.9200000000000003e-06,
19
- "loss": 0.0582,
20
  "step": 50
21
  },
22
  {
23
- "epoch": 0.03,
24
  "learning_rate": 2.92e-06,
25
- "loss": 0.0527,
26
  "step": 75
27
  },
28
  {
29
- "epoch": 0.04,
30
  "learning_rate": 3.920000000000001e-06,
31
- "loss": 0.0587,
32
  "step": 100
33
  },
34
  {
35
- "epoch": 0.05,
36
  "learning_rate": 4.92e-06,
37
- "loss": 0.0659,
38
  "step": 125
39
  },
40
  {
41
- "epoch": 0.06,
42
  "learning_rate": 5.92e-06,
43
- "loss": 0.0681,
44
  "step": 150
45
  },
46
  {
47
- "epoch": 0.07,
48
  "learning_rate": 6.92e-06,
49
- "loss": 0.07,
50
  "step": 175
51
  },
52
  {
53
- "epoch": 0.08,
54
  "learning_rate": 7.92e-06,
55
- "loss": 0.0856,
56
  "step": 200
57
  },
58
  {
59
- "epoch": 0.09,
60
  "learning_rate": 8.920000000000001e-06,
61
- "loss": 0.0894,
62
  "step": 225
63
  },
64
  {
65
- "epoch": 0.1,
66
  "learning_rate": 9.920000000000002e-06,
67
- "loss": 0.0751,
68
  "step": 250
69
  },
70
  {
71
- "epoch": 0.11,
72
- "learning_rate": 9.89777777777778e-06,
73
- "loss": 0.0772,
74
  "step": 275
75
  },
76
  {
77
- "epoch": 0.12,
78
- "learning_rate": 9.786666666666667e-06,
79
- "loss": 0.0698,
80
  "step": 300
81
  },
82
  {
83
- "epoch": 1.0,
84
- "learning_rate": 9.675555555555555e-06,
85
- "loss": 0.0893,
86
  "step": 325
87
  },
88
  {
89
- "epoch": 1.01,
90
- "learning_rate": 9.564444444444445e-06,
91
- "loss": 0.0782,
92
  "step": 350
93
  },
94
  {
95
- "epoch": 1.02,
96
- "learning_rate": 9.453333333333335e-06,
97
- "loss": 0.0595,
98
  "step": 375
99
  },
100
  {
101
- "epoch": 1.03,
102
- "learning_rate": 9.342222222222223e-06,
103
- "loss": 0.0537,
104
  "step": 400
105
  },
106
  {
107
- "epoch": 1.04,
108
- "learning_rate": 9.231111111111111e-06,
109
- "loss": 0.052,
110
  "step": 425
111
  },
112
  {
113
- "epoch": 1.05,
114
- "learning_rate": 9.12e-06,
115
- "loss": 0.05,
116
  "step": 450
117
  },
118
  {
119
- "epoch": 1.06,
120
- "learning_rate": 9.008888888888889e-06,
121
- "loss": 0.0522,
122
  "step": 475
123
  },
124
  {
125
- "epoch": 1.07,
126
- "learning_rate": 8.897777777777779e-06,
127
- "loss": 0.0467,
128
  "step": 500
129
  },
130
  {
131
- "epoch": 1.08,
132
- "learning_rate": 8.786666666666668e-06,
133
- "loss": 0.0586,
134
  "step": 525
135
  },
136
  {
137
- "epoch": 1.09,
138
- "learning_rate": 8.675555555555556e-06,
139
- "loss": 0.0437,
140
  "step": 550
141
  },
142
  {
143
- "epoch": 1.1,
144
- "learning_rate": 8.564444444444445e-06,
145
- "loss": 0.0395,
146
  "step": 575
147
  },
148
  {
149
- "epoch": 1.11,
150
- "learning_rate": 8.453333333333334e-06,
151
- "loss": 0.0371,
152
  "step": 600
153
  },
154
  {
155
- "epoch": 1.12,
156
- "learning_rate": 8.342222222222222e-06,
157
- "loss": 0.0316,
158
  "step": 625
159
  },
160
  {
161
- "epoch": 2.01,
162
- "learning_rate": 8.231111111111112e-06,
163
- "loss": 0.0412,
164
  "step": 650
165
  },
166
  {
167
- "epoch": 2.02,
168
- "learning_rate": 8.120000000000002e-06,
169
- "loss": 0.0335,
170
  "step": 675
171
  },
172
  {
173
- "epoch": 2.03,
174
- "learning_rate": 8.00888888888889e-06,
175
- "loss": 0.0314,
176
  "step": 700
177
  },
178
  {
179
- "epoch": 2.04,
180
- "learning_rate": 7.897777777777778e-06,
181
- "loss": 0.0329,
182
  "step": 725
183
  },
184
  {
185
- "epoch": 2.05,
186
- "learning_rate": 7.786666666666666e-06,
187
- "loss": 0.0275,
188
  "step": 750
189
  },
190
  {
191
- "epoch": 2.06,
192
- "learning_rate": 7.675555555555556e-06,
193
- "loss": 0.028,
194
  "step": 775
195
  },
196
  {
197
- "epoch": 2.07,
198
- "learning_rate": 7.564444444444446e-06,
199
- "loss": 0.0256,
200
  "step": 800
201
  },
202
  {
203
- "epoch": 2.08,
204
- "learning_rate": 7.453333333333334e-06,
205
- "loss": 0.026,
206
  "step": 825
207
  },
208
  {
209
- "epoch": 2.09,
210
- "learning_rate": 7.342222222222223e-06,
211
- "loss": 0.0295,
212
  "step": 850
213
  },
214
  {
215
- "epoch": 2.1,
216
- "learning_rate": 7.231111111111112e-06,
217
- "loss": 0.0259,
218
  "step": 875
219
  },
220
  {
221
- "epoch": 2.11,
222
- "learning_rate": 7.1200000000000004e-06,
223
- "loss": 0.0173,
224
  "step": 900
225
  },
226
  {
227
- "epoch": 2.12,
228
- "learning_rate": 7.008888888888889e-06,
229
- "loss": 0.014,
230
  "step": 925
231
  },
232
  {
233
- "epoch": 3.0,
234
- "learning_rate": 6.897777777777779e-06,
235
- "loss": 0.0158,
236
  "step": 950
237
  },
238
  {
239
- "epoch": 3.01,
240
- "learning_rate": 6.786666666666667e-06,
241
- "loss": 0.0193,
242
  "step": 975
243
  },
244
  {
245
- "epoch": 3.02,
246
- "learning_rate": 6.675555555555556e-06,
247
- "loss": 0.0146,
248
  "step": 1000
249
  },
250
  {
251
- "epoch": 3.02,
252
- "eval_loss": 0.2546452581882477,
253
- "eval_runtime": 2882.0567,
254
- "eval_samples_per_second": 1.759,
255
- "eval_steps_per_second": 0.11,
256
- "eval_wer": 11.942264272658853,
257
  "step": 1000
258
  },
259
  {
260
- "epoch": 3.03,
261
- "learning_rate": 6.564444444444446e-06,
262
- "loss": 0.0129,
263
  "step": 1025
264
  },
265
  {
266
- "epoch": 3.04,
267
- "learning_rate": 6.453333333333334e-06,
268
- "loss": 0.0111,
269
  "step": 1050
270
  },
271
  {
272
- "epoch": 3.05,
273
- "learning_rate": 6.342222222222223e-06,
274
- "loss": 0.0143,
275
  "step": 1075
276
  },
277
  {
278
- "epoch": 3.06,
279
- "learning_rate": 6.231111111111111e-06,
280
- "loss": 0.0128,
281
  "step": 1100
282
  },
283
  {
284
- "epoch": 3.07,
285
- "learning_rate": 6.120000000000001e-06,
286
- "loss": 0.0105,
287
  "step": 1125
288
  },
289
  {
290
- "epoch": 3.08,
291
- "learning_rate": 6.00888888888889e-06,
292
- "loss": 0.012,
293
  "step": 1150
294
  },
295
  {
296
- "epoch": 3.09,
297
- "learning_rate": 5.897777777777778e-06,
298
- "loss": 0.0133,
299
  "step": 1175
300
  },
301
  {
302
- "epoch": 3.1,
303
- "learning_rate": 5.7866666666666674e-06,
304
- "loss": 0.0093,
305
  "step": 1200
306
  },
307
  {
308
- "epoch": 3.11,
309
- "learning_rate": 5.675555555555556e-06,
310
- "loss": 0.0097,
311
  "step": 1225
312
  },
313
  {
314
- "epoch": 3.12,
315
- "learning_rate": 5.5644444444444444e-06,
316
- "loss": 0.007,
317
  "step": 1250
318
  },
319
  {
320
- "epoch": 4.0,
321
- "learning_rate": 5.453333333333334e-06,
322
- "loss": 0.0059,
323
  "step": 1275
324
  },
325
  {
326
- "epoch": 4.01,
327
- "learning_rate": 5.342222222222223e-06,
328
- "loss": 0.01,
329
  "step": 1300
330
  },
331
  {
332
- "epoch": 4.02,
333
- "learning_rate": 5.231111111111111e-06,
334
- "loss": 0.0086,
335
  "step": 1325
336
  },
337
  {
338
- "epoch": 4.03,
339
- "learning_rate": 5.12e-06,
340
- "loss": 0.0048,
341
  "step": 1350
342
  },
343
  {
344
- "epoch": 4.04,
345
- "learning_rate": 5.00888888888889e-06,
346
- "loss": 0.0058,
347
  "step": 1375
348
  },
349
  {
350
- "epoch": 4.05,
351
- "learning_rate": 4.897777777777778e-06,
352
- "loss": 0.0056,
353
  "step": 1400
354
  },
355
  {
356
- "epoch": 4.06,
357
- "learning_rate": 4.786666666666667e-06,
358
- "loss": 0.0059,
359
  "step": 1425
360
  },
361
  {
362
- "epoch": 4.07,
363
- "learning_rate": 4.675555555555556e-06,
364
- "loss": 0.0038,
365
  "step": 1450
366
  },
367
  {
368
- "epoch": 4.08,
369
- "learning_rate": 4.564444444444445e-06,
370
- "loss": 0.0049,
371
  "step": 1475
372
  },
373
  {
374
- "epoch": 4.09,
375
- "learning_rate": 4.453333333333334e-06,
376
- "loss": 0.0051,
377
  "step": 1500
378
  },
379
  {
380
- "epoch": 4.1,
381
- "learning_rate": 4.3422222222222225e-06,
382
- "loss": 0.0044,
383
  "step": 1525
384
  },
385
  {
386
- "epoch": 4.11,
387
- "learning_rate": 4.2311111111111114e-06,
388
- "loss": 0.0026,
389
  "step": 1550
390
  },
391
  {
392
- "epoch": 4.12,
393
- "learning_rate": 4.12e-06,
394
- "loss": 0.0036,
395
  "step": 1575
396
  },
397
  {
398
- "epoch": 5.01,
399
- "learning_rate": 4.008888888888889e-06,
400
- "loss": 0.0035,
401
  "step": 1600
402
  },
403
  {
404
- "epoch": 5.02,
405
- "learning_rate": 3.897777777777778e-06,
406
- "loss": 0.0024,
407
  "step": 1625
408
  },
409
  {
410
- "epoch": 5.03,
411
- "learning_rate": 3.7866666666666667e-06,
412
- "loss": 0.0026,
413
  "step": 1650
414
  },
415
  {
416
- "epoch": 5.04,
417
- "learning_rate": 3.675555555555556e-06,
418
- "loss": 0.0031,
419
  "step": 1675
420
  },
421
  {
422
- "epoch": 5.05,
423
- "learning_rate": 3.564444444444445e-06,
424
- "loss": 0.0045,
425
  "step": 1700
426
  },
427
  {
428
- "epoch": 5.06,
429
- "learning_rate": 3.4533333333333334e-06,
430
- "loss": 0.0019,
431
  "step": 1725
432
  },
433
  {
434
- "epoch": 5.07,
435
- "learning_rate": 3.3422222222222224e-06,
436
- "loss": 0.0018,
437
  "step": 1750
438
  },
439
  {
440
- "epoch": 5.08,
441
- "learning_rate": 3.2311111111111117e-06,
442
- "loss": 0.0033,
443
  "step": 1775
444
  },
445
  {
446
- "epoch": 5.09,
447
- "learning_rate": 3.12e-06,
448
- "loss": 0.0048,
449
  "step": 1800
450
  },
451
  {
452
- "epoch": 5.1,
453
- "learning_rate": 3.008888888888889e-06,
454
- "loss": 0.0019,
455
  "step": 1825
456
  },
457
  {
458
- "epoch": 5.11,
459
- "learning_rate": 2.8977777777777785e-06,
460
- "loss": 0.0015,
461
  "step": 1850
462
  },
463
  {
464
- "epoch": 5.12,
465
- "learning_rate": 2.786666666666667e-06,
466
- "loss": 0.0018,
467
  "step": 1875
468
  },
469
  {
470
- "epoch": 6.0,
471
- "learning_rate": 2.675555555555556e-06,
472
- "loss": 0.0017,
473
  "step": 1900
474
  },
475
  {
476
- "epoch": 6.01,
477
- "learning_rate": 2.5644444444444444e-06,
478
- "loss": 0.0017,
479
  "step": 1925
480
  },
481
  {
482
- "epoch": 6.02,
483
- "learning_rate": 2.4533333333333333e-06,
484
- "loss": 0.0009,
485
  "step": 1950
486
  },
487
  {
488
- "epoch": 6.03,
489
- "learning_rate": 2.342222222222222e-06,
490
- "loss": 0.0011,
491
  "step": 1975
492
  },
493
  {
494
- "epoch": 6.04,
495
- "learning_rate": 2.2311111111111115e-06,
496
- "loss": 0.0017,
497
  "step": 2000
498
  },
499
  {
500
- "epoch": 6.04,
501
- "eval_loss": 0.29696929454803467,
502
- "eval_runtime": 2899.6818,
503
- "eval_samples_per_second": 1.748,
504
- "eval_steps_per_second": 0.109,
505
- "eval_wer": 11.37780883775938,
506
  "step": 2000
507
  },
508
  {
509
- "epoch": 6.05,
510
- "learning_rate": 2.12e-06,
511
- "loss": 0.0013,
512
  "step": 2025
513
  },
514
  {
515
- "epoch": 6.06,
516
- "learning_rate": 2.008888888888889e-06,
517
- "loss": 0.0014,
518
  "step": 2050
519
  },
520
  {
521
- "epoch": 6.07,
522
- "learning_rate": 1.8977777777777779e-06,
523
- "loss": 0.0008,
524
  "step": 2075
525
  },
526
  {
527
- "epoch": 6.08,
528
- "learning_rate": 1.7866666666666668e-06,
529
- "loss": 0.001,
530
  "step": 2100
531
  },
532
  {
533
- "epoch": 6.09,
534
- "learning_rate": 1.675555555555556e-06,
535
- "loss": 0.0009,
536
  "step": 2125
537
  },
538
  {
539
- "epoch": 6.1,
540
- "learning_rate": 1.5644444444444446e-06,
541
- "loss": 0.0006,
542
  "step": 2150
543
  },
544
  {
545
- "epoch": 6.11,
546
- "learning_rate": 1.4533333333333335e-06,
547
- "loss": 0.0011,
548
  "step": 2175
549
  },
550
  {
551
- "epoch": 6.12,
552
- "learning_rate": 1.3422222222222222e-06,
553
- "loss": 0.0006,
554
  "step": 2200
555
  },
556
  {
557
- "epoch": 7.01,
558
- "learning_rate": 1.2311111111111112e-06,
559
- "loss": 0.0006,
560
  "step": 2225
561
  },
562
  {
563
- "epoch": 7.02,
564
- "learning_rate": 1.12e-06,
565
- "loss": 0.0006,
566
  "step": 2250
567
  },
568
  {
569
- "epoch": 7.03,
570
- "learning_rate": 1.008888888888889e-06,
571
- "loss": 0.0006,
572
  "step": 2275
573
  },
574
  {
575
- "epoch": 7.04,
576
- "learning_rate": 8.977777777777778e-07,
577
- "loss": 0.0007,
578
  "step": 2300
579
  },
580
  {
581
- "epoch": 7.05,
582
- "learning_rate": 7.866666666666667e-07,
583
- "loss": 0.0009,
584
  "step": 2325
585
  },
586
  {
587
- "epoch": 7.06,
588
- "learning_rate": 6.755555555555555e-07,
589
- "loss": 0.0007,
590
  "step": 2350
591
  },
592
  {
593
- "epoch": 7.07,
594
- "learning_rate": 5.644444444444445e-07,
595
- "loss": 0.0007,
596
  "step": 2375
597
  },
598
  {
599
- "epoch": 7.08,
600
- "learning_rate": 4.533333333333334e-07,
601
- "loss": 0.0006,
602
  "step": 2400
603
  },
604
  {
605
- "epoch": 7.09,
606
- "learning_rate": 3.422222222222223e-07,
607
- "loss": 0.0007,
608
  "step": 2425
609
  },
610
  {
611
- "epoch": 7.1,
612
- "learning_rate": 2.3111111111111112e-07,
613
- "loss": 0.0006,
614
  "step": 2450
615
  },
616
  {
617
- "epoch": 7.11,
618
- "learning_rate": 1.2000000000000002e-07,
619
- "loss": 0.0006,
620
  "step": 2475
621
  },
622
  {
623
- "epoch": 7.12,
624
- "learning_rate": 8.88888888888889e-09,
625
- "loss": 0.0006,
626
  "step": 2500
627
  },
628
  {
629
- "epoch": 7.12,
630
- "step": 2500,
631
- "total_flos": 8.159123872677888e+19,
632
- "train_loss": 0.026056346493959427,
633
- "train_runtime": 20075.1792,
634
- "train_samples_per_second": 3.985,
635
- "train_steps_per_second": 0.125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636
  }
637
  ],
638
- "max_steps": 2500,
639
  "num_train_epochs": 9223372036854775807,
640
- "total_flos": 8.159123872677888e+19,
641
  "trial_name": null,
642
  "trial_params": null
643
  }
 
1
  {
2
+ "best_metric": 9.891409525857435,
3
+ "best_model_checkpoint": "./checkpoint-5000",
4
+ "epoch": 1.0,
5
+ "global_step": 5000,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
 
10
  {
11
  "epoch": 0.01,
12
  "learning_rate": 9.200000000000001e-07,
13
+ "loss": 0.4442,
14
  "step": 25
15
  },
16
  {
17
+ "epoch": 0.01,
18
  "learning_rate": 1.9200000000000003e-06,
19
+ "loss": 0.1027,
20
  "step": 50
21
  },
22
  {
23
+ "epoch": 0.01,
24
  "learning_rate": 2.92e-06,
25
+ "loss": 0.0877,
26
  "step": 75
27
  },
28
  {
29
+ "epoch": 0.02,
30
  "learning_rate": 3.920000000000001e-06,
31
+ "loss": 0.0788,
32
  "step": 100
33
  },
34
  {
35
+ "epoch": 0.03,
36
  "learning_rate": 4.92e-06,
37
+ "loss": 0.0815,
38
  "step": 125
39
  },
40
  {
41
+ "epoch": 0.03,
42
  "learning_rate": 5.92e-06,
43
+ "loss": 0.0817,
44
  "step": 150
45
  },
46
  {
47
+ "epoch": 0.04,
48
  "learning_rate": 6.92e-06,
49
+ "loss": 0.0614,
50
  "step": 175
51
  },
52
  {
53
+ "epoch": 0.04,
54
  "learning_rate": 7.92e-06,
55
+ "loss": 0.049,
56
  "step": 200
57
  },
58
  {
59
+ "epoch": 0.04,
60
  "learning_rate": 8.920000000000001e-06,
61
+ "loss": 0.0471,
62
  "step": 225
63
  },
64
  {
65
+ "epoch": 0.05,
66
  "learning_rate": 9.920000000000002e-06,
67
+ "loss": 0.0456,
68
  "step": 250
69
  },
70
  {
71
+ "epoch": 0.06,
72
+ "learning_rate": 9.951578947368423e-06,
73
+ "loss": 0.0483,
74
  "step": 275
75
  },
76
  {
77
+ "epoch": 0.06,
78
+ "learning_rate": 9.898947368421054e-06,
79
+ "loss": 0.051,
80
  "step": 300
81
  },
82
  {
83
+ "epoch": 0.07,
84
+ "learning_rate": 9.846315789473684e-06,
85
+ "loss": 0.0526,
86
  "step": 325
87
  },
88
  {
89
+ "epoch": 0.07,
90
+ "learning_rate": 9.793684210526316e-06,
91
+ "loss": 0.0609,
92
  "step": 350
93
  },
94
  {
95
+ "epoch": 0.07,
96
+ "learning_rate": 9.741052631578947e-06,
97
+ "loss": 0.052,
98
  "step": 375
99
  },
100
  {
101
+ "epoch": 0.08,
102
+ "learning_rate": 9.68842105263158e-06,
103
+ "loss": 0.0476,
104
  "step": 400
105
  },
106
  {
107
+ "epoch": 0.09,
108
+ "learning_rate": 9.635789473684212e-06,
109
+ "loss": 0.0433,
110
  "step": 425
111
  },
112
  {
113
+ "epoch": 0.09,
114
+ "learning_rate": 9.583157894736842e-06,
115
+ "loss": 0.0508,
116
  "step": 450
117
  },
118
  {
119
+ "epoch": 0.1,
120
+ "learning_rate": 9.530526315789474e-06,
121
+ "loss": 0.0551,
122
  "step": 475
123
  },
124
  {
125
+ "epoch": 0.1,
126
+ "learning_rate": 9.477894736842106e-06,
127
+ "loss": 0.0413,
128
  "step": 500
129
  },
130
  {
131
+ "epoch": 0.1,
132
+ "learning_rate": 9.425263157894737e-06,
133
+ "loss": 0.0313,
134
  "step": 525
135
  },
136
  {
137
+ "epoch": 0.11,
138
+ "learning_rate": 9.372631578947369e-06,
139
+ "loss": 0.0411,
140
  "step": 550
141
  },
142
  {
143
+ "epoch": 0.12,
144
+ "learning_rate": 9.32e-06,
145
+ "loss": 0.0496,
146
  "step": 575
147
  },
148
  {
149
+ "epoch": 0.12,
150
+ "learning_rate": 9.267368421052632e-06,
151
+ "loss": 0.0442,
152
  "step": 600
153
  },
154
  {
155
+ "epoch": 0.12,
156
+ "learning_rate": 9.214736842105264e-06,
157
+ "loss": 0.0445,
158
  "step": 625
159
  },
160
  {
161
+ "epoch": 0.13,
162
+ "learning_rate": 9.162105263157895e-06,
163
+ "loss": 0.0536,
164
  "step": 650
165
  },
166
  {
167
+ "epoch": 0.14,
168
+ "learning_rate": 9.109473684210527e-06,
169
+ "loss": 0.036,
170
  "step": 675
171
  },
172
  {
173
+ "epoch": 0.14,
174
+ "learning_rate": 9.056842105263159e-06,
175
+ "loss": 0.034,
176
  "step": 700
177
  },
178
  {
179
+ "epoch": 0.14,
180
+ "learning_rate": 9.00421052631579e-06,
181
+ "loss": 0.0305,
182
  "step": 725
183
  },
184
  {
185
+ "epoch": 0.15,
186
+ "learning_rate": 8.951578947368422e-06,
187
+ "loss": 0.0301,
188
  "step": 750
189
  },
190
  {
191
+ "epoch": 0.15,
192
+ "learning_rate": 8.898947368421054e-06,
193
+ "loss": 0.0362,
194
  "step": 775
195
  },
196
  {
197
+ "epoch": 0.16,
198
+ "learning_rate": 8.846315789473685e-06,
199
+ "loss": 0.0323,
200
  "step": 800
201
  },
202
  {
203
+ "epoch": 0.17,
204
+ "learning_rate": 8.793684210526317e-06,
205
+ "loss": 0.0416,
206
  "step": 825
207
  },
208
  {
209
+ "epoch": 0.17,
210
+ "learning_rate": 8.741052631578949e-06,
211
+ "loss": 0.033,
212
  "step": 850
213
  },
214
  {
215
+ "epoch": 0.17,
216
+ "learning_rate": 8.688421052631579e-06,
217
+ "loss": 0.0372,
218
  "step": 875
219
  },
220
  {
221
+ "epoch": 0.18,
222
+ "learning_rate": 8.63578947368421e-06,
223
+ "loss": 0.0332,
224
  "step": 900
225
  },
226
  {
227
+ "epoch": 0.18,
228
+ "learning_rate": 8.583157894736843e-06,
229
+ "loss": 0.0319,
230
  "step": 925
231
  },
232
  {
233
+ "epoch": 0.19,
234
+ "learning_rate": 8.530526315789475e-06,
235
+ "loss": 0.037,
236
  "step": 950
237
  },
238
  {
239
+ "epoch": 0.2,
240
+ "learning_rate": 8.477894736842107e-06,
241
+ "loss": 0.0437,
242
  "step": 975
243
  },
244
  {
245
+ "epoch": 0.2,
246
+ "learning_rate": 8.425263157894737e-06,
247
+ "loss": 0.0383,
248
  "step": 1000
249
  },
250
  {
251
+ "epoch": 0.2,
252
+ "eval_loss": 0.22878967225551605,
253
+ "eval_runtime": 2943.9063,
254
+ "eval_samples_per_second": 1.722,
255
+ "eval_steps_per_second": 0.108,
256
+ "eval_wer": 12.202988925921945,
257
  "step": 1000
258
  },
259
  {
260
+ "epoch": 0.2,
261
+ "learning_rate": 8.372631578947368e-06,
262
+ "loss": 0.0308,
263
  "step": 1025
264
  },
265
  {
266
+ "epoch": 0.21,
267
+ "learning_rate": 8.32e-06,
268
+ "loss": 0.0329,
269
  "step": 1050
270
  },
271
  {
272
+ "epoch": 0.21,
273
+ "learning_rate": 8.267368421052632e-06,
274
+ "loss": 0.0351,
275
  "step": 1075
276
  },
277
  {
278
+ "epoch": 0.22,
279
+ "learning_rate": 8.214736842105265e-06,
280
+ "loss": 0.0333,
281
  "step": 1100
282
  },
283
  {
284
+ "epoch": 0.23,
285
+ "learning_rate": 8.162105263157895e-06,
286
+ "loss": 0.0349,
287
  "step": 1125
288
  },
289
  {
290
+ "epoch": 0.23,
291
+ "learning_rate": 8.109473684210527e-06,
292
+ "loss": 0.0339,
293
  "step": 1150
294
  },
295
  {
296
+ "epoch": 0.23,
297
+ "learning_rate": 8.056842105263158e-06,
298
+ "loss": 0.0276,
299
  "step": 1175
300
  },
301
  {
302
+ "epoch": 0.24,
303
+ "learning_rate": 8.00421052631579e-06,
304
+ "loss": 0.0344,
305
  "step": 1200
306
  },
307
  {
308
+ "epoch": 0.24,
309
+ "learning_rate": 7.951578947368421e-06,
310
+ "loss": 0.0368,
311
  "step": 1225
312
  },
313
  {
314
+ "epoch": 0.25,
315
+ "learning_rate": 7.898947368421053e-06,
316
+ "loss": 0.0331,
317
  "step": 1250
318
  },
319
  {
320
+ "epoch": 0.26,
321
+ "learning_rate": 7.846315789473685e-06,
322
+ "loss": 0.028,
323
  "step": 1275
324
  },
325
  {
326
+ "epoch": 0.26,
327
+ "learning_rate": 7.793684210526316e-06,
328
+ "loss": 0.0333,
329
  "step": 1300
330
  },
331
  {
332
+ "epoch": 0.27,
333
+ "learning_rate": 7.741052631578948e-06,
334
+ "loss": 0.0299,
335
  "step": 1325
336
  },
337
  {
338
+ "epoch": 0.27,
339
+ "learning_rate": 7.68842105263158e-06,
340
+ "loss": 0.0252,
341
  "step": 1350
342
  },
343
  {
344
+ "epoch": 0.28,
345
+ "learning_rate": 7.635789473684211e-06,
346
+ "loss": 0.0288,
347
  "step": 1375
348
  },
349
  {
350
+ "epoch": 0.28,
351
+ "learning_rate": 7.583157894736842e-06,
352
+ "loss": 0.0294,
353
  "step": 1400
354
  },
355
  {
356
+ "epoch": 0.28,
357
+ "learning_rate": 7.5305263157894745e-06,
358
+ "loss": 0.0265,
359
  "step": 1425
360
  },
361
  {
362
+ "epoch": 0.29,
363
+ "learning_rate": 7.477894736842106e-06,
364
+ "loss": 0.0239,
365
  "step": 1450
366
  },
367
  {
368
+ "epoch": 0.29,
369
+ "learning_rate": 7.425263157894738e-06,
370
+ "loss": 0.0248,
371
  "step": 1475
372
  },
373
  {
374
+ "epoch": 0.3,
375
+ "learning_rate": 7.3726315789473694e-06,
376
+ "loss": 0.0306,
377
  "step": 1500
378
  },
379
  {
380
+ "epoch": 0.3,
381
+ "learning_rate": 7.32e-06,
382
+ "loss": 0.0262,
383
  "step": 1525
384
  },
385
  {
386
+ "epoch": 0.31,
387
+ "learning_rate": 7.267368421052632e-06,
388
+ "loss": 0.0257,
389
  "step": 1550
390
  },
391
  {
392
+ "epoch": 0.32,
393
+ "learning_rate": 7.2147368421052635e-06,
394
+ "loss": 0.0229,
395
  "step": 1575
396
  },
397
  {
398
+ "epoch": 0.32,
399
+ "learning_rate": 7.162105263157896e-06,
400
+ "loss": 0.0238,
401
  "step": 1600
402
  },
403
  {
404
+ "epoch": 0.33,
405
+ "learning_rate": 7.109473684210528e-06,
406
+ "loss": 0.0187,
407
  "step": 1625
408
  },
409
  {
410
+ "epoch": 0.33,
411
+ "learning_rate": 7.056842105263158e-06,
412
+ "loss": 0.0232,
413
  "step": 1650
414
  },
415
  {
416
+ "epoch": 0.34,
417
+ "learning_rate": 7.00421052631579e-06,
418
+ "loss": 0.0273,
419
  "step": 1675
420
  },
421
  {
422
+ "epoch": 0.34,
423
+ "learning_rate": 6.951578947368422e-06,
424
+ "loss": 0.0326,
425
  "step": 1700
426
  },
427
  {
428
+ "epoch": 0.34,
429
+ "learning_rate": 6.8989473684210525e-06,
430
+ "loss": 0.0266,
431
  "step": 1725
432
  },
433
  {
434
+ "epoch": 0.35,
435
+ "learning_rate": 6.846315789473684e-06,
436
+ "loss": 0.0245,
437
  "step": 1750
438
  },
439
  {
440
+ "epoch": 0.35,
441
+ "learning_rate": 6.793684210526317e-06,
442
+ "loss": 0.0345,
443
  "step": 1775
444
  },
445
  {
446
+ "epoch": 0.36,
447
+ "learning_rate": 6.741052631578948e-06,
448
+ "loss": 0.033,
449
  "step": 1800
450
  },
451
  {
452
+ "epoch": 0.36,
453
+ "learning_rate": 6.68842105263158e-06,
454
+ "loss": 0.0293,
455
  "step": 1825
456
  },
457
  {
458
+ "epoch": 0.37,
459
+ "learning_rate": 6.635789473684211e-06,
460
+ "loss": 0.0187,
461
  "step": 1850
462
  },
463
  {
464
+ "epoch": 0.38,
465
+ "learning_rate": 6.583157894736842e-06,
466
+ "loss": 0.0181,
467
  "step": 1875
468
  },
469
  {
470
+ "epoch": 0.38,
471
+ "learning_rate": 6.530526315789474e-06,
472
+ "loss": 0.0242,
473
  "step": 1900
474
  },
475
  {
476
+ "epoch": 0.39,
477
+ "learning_rate": 6.477894736842106e-06,
478
+ "loss": 0.0214,
479
  "step": 1925
480
  },
481
  {
482
+ "epoch": 0.39,
483
+ "learning_rate": 6.425263157894738e-06,
484
+ "loss": 0.0238,
485
  "step": 1950
486
  },
487
  {
488
+ "epoch": 0.4,
489
+ "learning_rate": 6.372631578947369e-06,
490
+ "loss": 0.0168,
491
  "step": 1975
492
  },
493
  {
494
+ "epoch": 0.4,
495
+ "learning_rate": 6.3200000000000005e-06,
496
+ "loss": 0.0239,
497
  "step": 2000
498
  },
499
  {
500
+ "epoch": 0.4,
501
+ "eval_loss": 0.2214207649230957,
502
+ "eval_runtime": 2933.0533,
503
+ "eval_samples_per_second": 1.728,
504
+ "eval_steps_per_second": 0.108,
505
+ "eval_wer": 11.38049672078271,
506
  "step": 2000
507
  },
508
  {
509
+ "epoch": 0.41,
510
+ "learning_rate": 6.267368421052632e-06,
511
+ "loss": 0.0201,
512
  "step": 2025
513
  },
514
  {
515
+ "epoch": 0.41,
516
+ "learning_rate": 6.214736842105264e-06,
517
+ "loss": 0.0149,
518
  "step": 2050
519
  },
520
  {
521
+ "epoch": 0.41,
522
+ "learning_rate": 6.1621052631578945e-06,
523
+ "loss": 0.0167,
524
  "step": 2075
525
  },
526
  {
527
+ "epoch": 0.42,
528
+ "learning_rate": 6.109473684210527e-06,
529
+ "loss": 0.0169,
530
  "step": 2100
531
  },
532
  {
533
+ "epoch": 0.42,
534
+ "learning_rate": 6.056842105263159e-06,
535
+ "loss": 0.0157,
536
  "step": 2125
537
  },
538
  {
539
+ "epoch": 0.43,
540
+ "learning_rate": 6.00421052631579e-06,
541
+ "loss": 0.0168,
542
  "step": 2150
543
  },
544
  {
545
+ "epoch": 0.43,
546
+ "learning_rate": 5.951578947368422e-06,
547
+ "loss": 0.0173,
548
  "step": 2175
549
  },
550
  {
551
+ "epoch": 0.44,
552
+ "learning_rate": 5.898947368421053e-06,
553
+ "loss": 0.0167,
554
  "step": 2200
555
  },
556
  {
557
+ "epoch": 0.45,
558
+ "learning_rate": 5.846315789473684e-06,
559
+ "loss": 0.015,
560
  "step": 2225
561
  },
562
  {
563
+ "epoch": 0.45,
564
+ "learning_rate": 5.793684210526316e-06,
565
+ "loss": 0.0212,
566
  "step": 2250
567
  },
568
  {
569
+ "epoch": 0.46,
570
+ "learning_rate": 5.7410526315789485e-06,
571
+ "loss": 0.0208,
572
  "step": 2275
573
  },
574
  {
575
+ "epoch": 0.46,
576
+ "learning_rate": 5.68842105263158e-06,
577
+ "loss": 0.0132,
578
  "step": 2300
579
  },
580
  {
581
+ "epoch": 0.47,
582
+ "learning_rate": 5.635789473684211e-06,
583
+ "loss": 0.0133,
584
  "step": 2325
585
  },
586
  {
587
+ "epoch": 0.47,
588
+ "learning_rate": 5.5831578947368425e-06,
589
+ "loss": 0.0146,
590
  "step": 2350
591
  },
592
  {
593
+ "epoch": 0.47,
594
+ "learning_rate": 5.530526315789474e-06,
595
+ "loss": 0.0163,
596
  "step": 2375
597
  },
598
  {
599
+ "epoch": 0.48,
600
+ "learning_rate": 5.477894736842105e-06,
601
+ "loss": 0.0141,
602
  "step": 2400
603
  },
604
  {
605
+ "epoch": 0.48,
606
+ "learning_rate": 5.425263157894737e-06,
607
+ "loss": 0.0168,
608
  "step": 2425
609
  },
610
  {
611
+ "epoch": 0.49,
612
+ "learning_rate": 5.372631578947369e-06,
613
+ "loss": 0.0189,
614
  "step": 2450
615
  },
616
  {
617
+ "epoch": 0.49,
618
+ "learning_rate": 5.320000000000001e-06,
619
+ "loss": 0.0204,
620
  "step": 2475
621
  },
622
  {
623
+ "epoch": 0.5,
624
+ "learning_rate": 5.267368421052632e-06,
625
+ "loss": 0.0165,
626
  "step": 2500
627
  },
628
  {
629
+ "epoch": 0.51,
630
+ "learning_rate": 5.214736842105263e-06,
631
+ "loss": 0.0192,
632
+ "step": 2525
633
+ },
634
+ {
635
+ "epoch": 0.51,
636
+ "learning_rate": 5.162105263157895e-06,
637
+ "loss": 0.0164,
638
+ "step": 2550
639
+ },
640
+ {
641
+ "epoch": 0.52,
642
+ "learning_rate": 5.1094736842105264e-06,
643
+ "loss": 0.0123,
644
+ "step": 2575
645
+ },
646
+ {
647
+ "epoch": 0.52,
648
+ "learning_rate": 5.056842105263158e-06,
649
+ "loss": 0.0174,
650
+ "step": 2600
651
+ },
652
+ {
653
+ "epoch": 0.53,
654
+ "learning_rate": 5.0042105263157906e-06,
655
+ "loss": 0.0152,
656
+ "step": 2625
657
+ },
658
+ {
659
+ "epoch": 0.53,
660
+ "learning_rate": 4.951578947368421e-06,
661
+ "loss": 0.0156,
662
+ "step": 2650
663
+ },
664
+ {
665
+ "epoch": 0.54,
666
+ "learning_rate": 4.898947368421053e-06,
667
+ "loss": 0.0138,
668
+ "step": 2675
669
+ },
670
+ {
671
+ "epoch": 0.54,
672
+ "learning_rate": 4.846315789473685e-06,
673
+ "loss": 0.0138,
674
+ "step": 2700
675
+ },
676
+ {
677
+ "epoch": 0.55,
678
+ "learning_rate": 4.793684210526316e-06,
679
+ "loss": 0.0142,
680
+ "step": 2725
681
+ },
682
+ {
683
+ "epoch": 0.55,
684
+ "learning_rate": 4.741052631578948e-06,
685
+ "loss": 0.0119,
686
+ "step": 2750
687
+ },
688
+ {
689
+ "epoch": 0.56,
690
+ "learning_rate": 4.6884210526315795e-06,
691
+ "loss": 0.0154,
692
+ "step": 2775
693
+ },
694
+ {
695
+ "epoch": 0.56,
696
+ "learning_rate": 4.63578947368421e-06,
697
+ "loss": 0.0137,
698
+ "step": 2800
699
+ },
700
+ {
701
+ "epoch": 0.56,
702
+ "learning_rate": 4.583157894736843e-06,
703
+ "loss": 0.0167,
704
+ "step": 2825
705
+ },
706
+ {
707
+ "epoch": 0.57,
708
+ "learning_rate": 4.5305263157894744e-06,
709
+ "loss": 0.0172,
710
+ "step": 2850
711
+ },
712
+ {
713
+ "epoch": 0.57,
714
+ "learning_rate": 4.477894736842105e-06,
715
+ "loss": 0.013,
716
+ "step": 2875
717
+ },
718
+ {
719
+ "epoch": 0.58,
720
+ "learning_rate": 4.425263157894737e-06,
721
+ "loss": 0.0141,
722
+ "step": 2900
723
+ },
724
+ {
725
+ "epoch": 0.58,
726
+ "learning_rate": 4.3726315789473685e-06,
727
+ "loss": 0.0118,
728
+ "step": 2925
729
+ },
730
+ {
731
+ "epoch": 0.59,
732
+ "learning_rate": 4.32e-06,
733
+ "loss": 0.0179,
734
+ "step": 2950
735
+ },
736
+ {
737
+ "epoch": 0.59,
738
+ "learning_rate": 4.267368421052632e-06,
739
+ "loss": 0.0143,
740
+ "step": 2975
741
+ },
742
+ {
743
+ "epoch": 0.6,
744
+ "learning_rate": 4.214736842105263e-06,
745
+ "loss": 0.0125,
746
+ "step": 3000
747
+ },
748
+ {
749
+ "epoch": 0.6,
750
+ "eval_loss": 0.22999617457389832,
751
+ "eval_runtime": 2921.4658,
752
+ "eval_samples_per_second": 1.735,
753
+ "eval_steps_per_second": 0.109,
754
+ "eval_wer": 10.98269003332975,
755
+ "step": 3000
756
+ },
757
+ {
758
+ "epoch": 0.6,
759
+ "learning_rate": 4.162105263157895e-06,
760
+ "loss": 0.0089,
761
+ "step": 3025
762
+ },
763
+ {
764
+ "epoch": 0.61,
765
+ "learning_rate": 4.109473684210527e-06,
766
+ "loss": 0.0113,
767
+ "step": 3050
768
+ },
769
+ {
770
+ "epoch": 0.61,
771
+ "learning_rate": 4.056842105263158e-06,
772
+ "loss": 0.0097,
773
+ "step": 3075
774
+ },
775
+ {
776
+ "epoch": 0.62,
777
+ "learning_rate": 4.00421052631579e-06,
778
+ "loss": 0.0135,
779
+ "step": 3100
780
+ },
781
+ {
782
+ "epoch": 0.62,
783
+ "learning_rate": 3.951578947368422e-06,
784
+ "loss": 0.0142,
785
+ "step": 3125
786
+ },
787
+ {
788
+ "epoch": 0.63,
789
+ "learning_rate": 3.898947368421052e-06,
790
+ "loss": 0.0132,
791
+ "step": 3150
792
+ },
793
+ {
794
+ "epoch": 0.64,
795
+ "learning_rate": 3.846315789473685e-06,
796
+ "loss": 0.0161,
797
+ "step": 3175
798
+ },
799
+ {
800
+ "epoch": 0.64,
801
+ "learning_rate": 3.793684210526316e-06,
802
+ "loss": 0.0141,
803
+ "step": 3200
804
+ },
805
+ {
806
+ "epoch": 0.65,
807
+ "learning_rate": 3.7410526315789473e-06,
808
+ "loss": 0.0189,
809
+ "step": 3225
810
+ },
811
+ {
812
+ "epoch": 0.65,
813
+ "learning_rate": 3.6884210526315794e-06,
814
+ "loss": 0.0143,
815
+ "step": 3250
816
+ },
817
+ {
818
+ "epoch": 0.66,
819
+ "learning_rate": 3.635789473684211e-06,
820
+ "loss": 0.0165,
821
+ "step": 3275
822
+ },
823
+ {
824
+ "epoch": 0.66,
825
+ "learning_rate": 3.5831578947368422e-06,
826
+ "loss": 0.0104,
827
+ "step": 3300
828
+ },
829
+ {
830
+ "epoch": 0.67,
831
+ "learning_rate": 3.5305263157894743e-06,
832
+ "loss": 0.011,
833
+ "step": 3325
834
+ },
835
+ {
836
+ "epoch": 0.67,
837
+ "learning_rate": 3.4778947368421055e-06,
838
+ "loss": 0.0146,
839
+ "step": 3350
840
+ },
841
+ {
842
+ "epoch": 0.68,
843
+ "learning_rate": 3.425263157894737e-06,
844
+ "loss": 0.0196,
845
+ "step": 3375
846
+ },
847
+ {
848
+ "epoch": 0.68,
849
+ "learning_rate": 3.3726315789473683e-06,
850
+ "loss": 0.0139,
851
+ "step": 3400
852
+ },
853
+ {
854
+ "epoch": 0.69,
855
+ "learning_rate": 3.3200000000000004e-06,
856
+ "loss": 0.0127,
857
+ "step": 3425
858
+ },
859
+ {
860
+ "epoch": 0.69,
861
+ "learning_rate": 3.267368421052632e-06,
862
+ "loss": 0.0124,
863
+ "step": 3450
864
+ },
865
+ {
866
+ "epoch": 0.69,
867
+ "learning_rate": 3.2147368421052633e-06,
868
+ "loss": 0.0112,
869
+ "step": 3475
870
+ },
871
+ {
872
+ "epoch": 0.7,
873
+ "learning_rate": 3.1621052631578953e-06,
874
+ "loss": 0.0149,
875
+ "step": 3500
876
+ },
877
+ {
878
+ "epoch": 0.7,
879
+ "learning_rate": 3.1094736842105265e-06,
880
+ "loss": 0.0155,
881
+ "step": 3525
882
+ },
883
+ {
884
+ "epoch": 0.71,
885
+ "learning_rate": 3.056842105263158e-06,
886
+ "loss": 0.0215,
887
+ "step": 3550
888
+ },
889
+ {
890
+ "epoch": 0.71,
891
+ "learning_rate": 3.0042105263157894e-06,
892
+ "loss": 0.0171,
893
+ "step": 3575
894
+ },
895
+ {
896
+ "epoch": 0.72,
897
+ "learning_rate": 2.9515789473684214e-06,
898
+ "loss": 0.0205,
899
+ "step": 3600
900
+ },
901
+ {
902
+ "epoch": 0.72,
903
+ "learning_rate": 2.8989473684210526e-06,
904
+ "loss": 0.0156,
905
+ "step": 3625
906
+ },
907
+ {
908
+ "epoch": 0.73,
909
+ "learning_rate": 2.8463157894736843e-06,
910
+ "loss": 0.0151,
911
+ "step": 3650
912
+ },
913
+ {
914
+ "epoch": 0.73,
915
+ "learning_rate": 2.7936842105263163e-06,
916
+ "loss": 0.0155,
917
+ "step": 3675
918
+ },
919
+ {
920
+ "epoch": 0.74,
921
+ "learning_rate": 2.7410526315789476e-06,
922
+ "loss": 0.0109,
923
+ "step": 3700
924
+ },
925
+ {
926
+ "epoch": 0.74,
927
+ "learning_rate": 2.688421052631579e-06,
928
+ "loss": 0.0183,
929
+ "step": 3725
930
+ },
931
+ {
932
+ "epoch": 0.75,
933
+ "learning_rate": 2.635789473684211e-06,
934
+ "loss": 0.0125,
935
+ "step": 3750
936
+ },
937
+ {
938
+ "epoch": 0.76,
939
+ "learning_rate": 2.5831578947368425e-06,
940
+ "loss": 0.0108,
941
+ "step": 3775
942
+ },
943
+ {
944
+ "epoch": 0.76,
945
+ "learning_rate": 2.5305263157894737e-06,
946
+ "loss": 0.0141,
947
+ "step": 3800
948
+ },
949
+ {
950
+ "epoch": 0.77,
951
+ "learning_rate": 2.4778947368421053e-06,
952
+ "loss": 0.012,
953
+ "step": 3825
954
+ },
955
+ {
956
+ "epoch": 0.77,
957
+ "learning_rate": 2.425263157894737e-06,
958
+ "loss": 0.0104,
959
+ "step": 3850
960
+ },
961
+ {
962
+ "epoch": 0.78,
963
+ "learning_rate": 2.3726315789473686e-06,
964
+ "loss": 0.0099,
965
+ "step": 3875
966
+ },
967
+ {
968
+ "epoch": 0.78,
969
+ "learning_rate": 2.3200000000000002e-06,
970
+ "loss": 0.0196,
971
+ "step": 3900
972
+ },
973
+ {
974
+ "epoch": 0.79,
975
+ "learning_rate": 2.267368421052632e-06,
976
+ "loss": 0.0201,
977
+ "step": 3925
978
+ },
979
+ {
980
+ "epoch": 0.79,
981
+ "learning_rate": 2.2147368421052635e-06,
982
+ "loss": 0.0127,
983
+ "step": 3950
984
+ },
985
+ {
986
+ "epoch": 0.8,
987
+ "learning_rate": 2.1621052631578947e-06,
988
+ "loss": 0.0166,
989
+ "step": 3975
990
+ },
991
+ {
992
+ "epoch": 0.8,
993
+ "learning_rate": 2.1094736842105264e-06,
994
+ "loss": 0.0168,
995
+ "step": 4000
996
+ },
997
+ {
998
+ "epoch": 0.8,
999
+ "eval_loss": 0.24368737637996674,
1000
+ "eval_runtime": 2933.3968,
1001
+ "eval_samples_per_second": 1.728,
1002
+ "eval_steps_per_second": 0.108,
1003
+ "eval_wer": 10.471992258896892,
1004
+ "step": 4000
1005
+ },
1006
+ {
1007
+ "epoch": 0.81,
1008
+ "learning_rate": 2.056842105263158e-06,
1009
+ "loss": 0.0111,
1010
+ "step": 4025
1011
+ },
1012
+ {
1013
+ "epoch": 0.81,
1014
+ "learning_rate": 2.0042105263157896e-06,
1015
+ "loss": 0.0105,
1016
+ "step": 4050
1017
+ },
1018
+ {
1019
+ "epoch": 0.81,
1020
+ "learning_rate": 1.9515789473684213e-06,
1021
+ "loss": 0.0109,
1022
+ "step": 4075
1023
+ },
1024
+ {
1025
+ "epoch": 0.82,
1026
+ "learning_rate": 1.8989473684210527e-06,
1027
+ "loss": 0.0167,
1028
+ "step": 4100
1029
+ },
1030
+ {
1031
+ "epoch": 0.82,
1032
+ "learning_rate": 1.8463157894736843e-06,
1033
+ "loss": 0.0102,
1034
+ "step": 4125
1035
+ },
1036
+ {
1037
+ "epoch": 0.83,
1038
+ "learning_rate": 1.7936842105263158e-06,
1039
+ "loss": 0.0099,
1040
+ "step": 4150
1041
+ },
1042
+ {
1043
+ "epoch": 0.83,
1044
+ "learning_rate": 1.7410526315789474e-06,
1045
+ "loss": 0.0157,
1046
+ "step": 4175
1047
+ },
1048
+ {
1049
+ "epoch": 0.84,
1050
+ "learning_rate": 1.6884210526315792e-06,
1051
+ "loss": 0.0203,
1052
+ "step": 4200
1053
+ },
1054
+ {
1055
+ "epoch": 0.84,
1056
+ "learning_rate": 1.6357894736842107e-06,
1057
+ "loss": 0.0222,
1058
+ "step": 4225
1059
+ },
1060
+ {
1061
+ "epoch": 0.85,
1062
+ "learning_rate": 1.5831578947368423e-06,
1063
+ "loss": 0.0159,
1064
+ "step": 4250
1065
+ },
1066
+ {
1067
+ "epoch": 0.85,
1068
+ "learning_rate": 1.5305263157894737e-06,
1069
+ "loss": 0.0172,
1070
+ "step": 4275
1071
+ },
1072
+ {
1073
+ "epoch": 0.86,
1074
+ "learning_rate": 1.4778947368421054e-06,
1075
+ "loss": 0.0106,
1076
+ "step": 4300
1077
+ },
1078
+ {
1079
+ "epoch": 0.86,
1080
+ "learning_rate": 1.425263157894737e-06,
1081
+ "loss": 0.0077,
1082
+ "step": 4325
1083
+ },
1084
+ {
1085
+ "epoch": 0.87,
1086
+ "learning_rate": 1.3726315789473684e-06,
1087
+ "loss": 0.0095,
1088
+ "step": 4350
1089
+ },
1090
+ {
1091
+ "epoch": 0.88,
1092
+ "learning_rate": 1.32e-06,
1093
+ "loss": 0.0073,
1094
+ "step": 4375
1095
+ },
1096
+ {
1097
+ "epoch": 0.88,
1098
+ "learning_rate": 1.2673684210526315e-06,
1099
+ "loss": 0.0064,
1100
+ "step": 4400
1101
+ },
1102
+ {
1103
+ "epoch": 0.89,
1104
+ "learning_rate": 1.2147368421052633e-06,
1105
+ "loss": 0.0088,
1106
+ "step": 4425
1107
+ },
1108
+ {
1109
+ "epoch": 0.89,
1110
+ "learning_rate": 1.1621052631578948e-06,
1111
+ "loss": 0.0085,
1112
+ "step": 4450
1113
+ },
1114
+ {
1115
+ "epoch": 0.9,
1116
+ "learning_rate": 1.1094736842105264e-06,
1117
+ "loss": 0.0111,
1118
+ "step": 4475
1119
+ },
1120
+ {
1121
+ "epoch": 0.9,
1122
+ "learning_rate": 1.0568421052631578e-06,
1123
+ "loss": 0.0072,
1124
+ "step": 4500
1125
+ },
1126
+ {
1127
+ "epoch": 0.91,
1128
+ "learning_rate": 1.0042105263157897e-06,
1129
+ "loss": 0.0175,
1130
+ "step": 4525
1131
+ },
1132
+ {
1133
+ "epoch": 0.91,
1134
+ "learning_rate": 9.515789473684212e-07,
1135
+ "loss": 0.0087,
1136
+ "step": 4550
1137
+ },
1138
+ {
1139
+ "epoch": 0.92,
1140
+ "learning_rate": 8.989473684210527e-07,
1141
+ "loss": 0.009,
1142
+ "step": 4575
1143
+ },
1144
+ {
1145
+ "epoch": 0.92,
1146
+ "learning_rate": 8.463157894736843e-07,
1147
+ "loss": 0.0103,
1148
+ "step": 4600
1149
+ },
1150
+ {
1151
+ "epoch": 0.93,
1152
+ "learning_rate": 7.936842105263158e-07,
1153
+ "loss": 0.0091,
1154
+ "step": 4625
1155
+ },
1156
+ {
1157
+ "epoch": 0.93,
1158
+ "learning_rate": 7.410526315789475e-07,
1159
+ "loss": 0.012,
1160
+ "step": 4650
1161
+ },
1162
+ {
1163
+ "epoch": 0.94,
1164
+ "learning_rate": 6.884210526315791e-07,
1165
+ "loss": 0.0113,
1166
+ "step": 4675
1167
+ },
1168
+ {
1169
+ "epoch": 0.94,
1170
+ "learning_rate": 6.357894736842106e-07,
1171
+ "loss": 0.0108,
1172
+ "step": 4700
1173
+ },
1174
+ {
1175
+ "epoch": 0.94,
1176
+ "learning_rate": 5.831578947368421e-07,
1177
+ "loss": 0.0094,
1178
+ "step": 4725
1179
+ },
1180
+ {
1181
+ "epoch": 0.95,
1182
+ "learning_rate": 5.305263157894737e-07,
1183
+ "loss": 0.0072,
1184
+ "step": 4750
1185
+ },
1186
+ {
1187
+ "epoch": 0.95,
1188
+ "learning_rate": 4.778947368421053e-07,
1189
+ "loss": 0.0078,
1190
+ "step": 4775
1191
+ },
1192
+ {
1193
+ "epoch": 0.96,
1194
+ "learning_rate": 4.2526315789473684e-07,
1195
+ "loss": 0.0065,
1196
+ "step": 4800
1197
+ },
1198
+ {
1199
+ "epoch": 0.96,
1200
+ "learning_rate": 3.726315789473685e-07,
1201
+ "loss": 0.0068,
1202
+ "step": 4825
1203
+ },
1204
+ {
1205
+ "epoch": 0.97,
1206
+ "learning_rate": 3.2e-07,
1207
+ "loss": 0.0105,
1208
+ "step": 4850
1209
+ },
1210
+ {
1211
+ "epoch": 0.97,
1212
+ "learning_rate": 2.6736842105263164e-07,
1213
+ "loss": 0.0054,
1214
+ "step": 4875
1215
+ },
1216
+ {
1217
+ "epoch": 0.98,
1218
+ "learning_rate": 2.1473684210526317e-07,
1219
+ "loss": 0.0077,
1220
+ "step": 4900
1221
+ },
1222
+ {
1223
+ "epoch": 0.98,
1224
+ "learning_rate": 1.6210526315789476e-07,
1225
+ "loss": 0.0085,
1226
+ "step": 4925
1227
+ },
1228
+ {
1229
+ "epoch": 0.99,
1230
+ "learning_rate": 1.0947368421052632e-07,
1231
+ "loss": 0.0092,
1232
+ "step": 4950
1233
+ },
1234
+ {
1235
+ "epoch": 0.99,
1236
+ "learning_rate": 5.68421052631579e-08,
1237
+ "loss": 0.0077,
1238
+ "step": 4975
1239
+ },
1240
+ {
1241
+ "epoch": 1.0,
1242
+ "learning_rate": 4.210526315789474e-09,
1243
+ "loss": 0.0071,
1244
+ "step": 5000
1245
+ },
1246
+ {
1247
+ "epoch": 1.0,
1248
+ "eval_loss": 0.24834245443344116,
1249
+ "eval_runtime": 2917.338,
1250
+ "eval_samples_per_second": 1.738,
1251
+ "eval_steps_per_second": 0.109,
1252
+ "eval_wer": 9.891409525857435,
1253
+ "step": 5000
1254
+ },
1255
+ {
1256
+ "epoch": 1.0,
1257
+ "step": 5000,
1258
+ "total_flos": 1.632967852032e+20,
1259
+ "train_loss": 0.025400285175442697,
1260
+ "train_runtime": 51804.3597,
1261
+ "train_samples_per_second": 3.089,
1262
+ "train_steps_per_second": 0.097
1263
  }
1264
  ],
1265
+ "max_steps": 5000,
1266
  "num_train_epochs": 9223372036854775807,
1267
+ "total_flos": 1.632967852032e+20,
1268
  "trial_name": null,
1269
  "trial_params": null
1270
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e13de8ddcc61da424ec8e8d050cd43e412a6f52aa9be94507835652edf1dedf
3
  size 3579
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a92c5600d30cca742b5eb96009172353c46564d5f8ae2f5babd1d6db76efb3
3
  size 3579